A Synopsis of the Lichen Genus *Xanthoparmelia* (Vainio) Hale (Ascomycotina, Parmeliaceae)

MASON E. HALE
Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with *Smithsonian Contributions to Knowledge* in 1848 and continuing with the following active series:

- Smithsonian Contributions to Anthropology
- Smithsonian Contributions to Astrophysics
- Smithsonian Contributions to Botany
- Smithsonian Contributions to the Earth Sciences
- Smithsonian Contributions to the Marine Sciences
- Smithsonian Contributions to Paleobiology
- Smithsonian Contributions to Zoology
- Smithsonian Folklife Studies
- Smithsonian Studies in Air and Space
- Smithsonian Studies in History and Technology

In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world.

Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover.

Robert McC. Adams
Secretary
Smithsonian Institution
A Synopsis of the Lichen Genus
Xanthoparmelia (Vainio) Hale
(Ascomycotina, Parmeliaceae)

Mason E. Hale

ISSUED
OCT 25 1990

SMITHSONIAN INSTITUTION PRESS
Washington, D.C.
1990
ABSTRACT

Hale, Mason E. A Synopsis of the Lichen Genus Xanthoparmelia (Vainio) Hale (Ascomycotina: Parmeliaceae). Smithsonian Contributions to Botany, number 74, 250 pages, 75 figures, 1990.—A world-level synopsis is presented for Xanthoparmelia with full synonymies, typification of all taxa, species descriptions, and keys. The genus is characterized by the presence of usnic acid in the cortex, a positive lichenin test, oil bodies in the rhizines, saxicolous or terricolous habit, uniform small ellipsoid colorless spores, and bifusiform or rarely cylindrical conidia. The lower surface is rhizinate except in a few species and brown or black. Cilia are lacking. The 406 species occur primarily in southern Africa (212) and Australia (145).

Two new species are described: X. greytonensis Hale and X. kasachstanica Hale. Four new combinations are made: X. mutabilis (Taylor) Hale, X. perplexa (Stizenberger) Hale, X. sigillata (Brusse) Hale, and X. verecunda (Brusse) Hale. One new name is proposed: X. neopropaguloides Hale.

OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllum japonicum Siebold and Zuccarini.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>2</td>
</tr>
<tr>
<td>History of Xanthoparmelia Research</td>
<td>2</td>
</tr>
<tr>
<td>Taxonomic Characters</td>
<td>4</td>
</tr>
<tr>
<td>Reproductive Structures</td>
<td>21</td>
</tr>
<tr>
<td>Chemistry</td>
<td>30</td>
</tr>
<tr>
<td>Phytogeography</td>
<td>33</td>
</tr>
<tr>
<td>Delimitation of Xanthoparmelia</td>
<td>36</td>
</tr>
<tr>
<td>Xanthoparmelia</td>
<td>37</td>
</tr>
<tr>
<td>Keys to the Species of Xanthoparmelia</td>
<td>38</td>
</tr>
<tr>
<td>Taxonomic Treatment</td>
<td>61</td>
</tr>
<tr>
<td>List of Nomina Inquirenda and Excluded or Untypified Names</td>
<td>229</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>233</td>
</tr>
<tr>
<td>Index</td>
<td>241</td>
</tr>
</tbody>
</table>
A Synopsis of the Lichen Genus
Xanthoparmelia (Vainio) Hale
(Ascomycotina: Parmeliaceae)

Mason E. Hale

Introduction

The Parmeliaceae (excluding the Usneaceae) is the largest foliose family among the lichenized fungi, with over 1200 species. Xanthoparmelia, one of the major genera in the family, now has 406 species. By comparison, Parmotrema Massalongo has about 250 species and Hypotrachyna (Vainio) Hale about 165.

The remaining parmelioid genera (Almbornia Esslinger, Arctoparmelia Hale, Asahinea Culberson and Culberson, Bulbodixis Hale, Canomaculina Elix and Hale, Canoparmelia Elix and Hale, Cetrariastrum Sipman, Cetraria Culberson and Culberson, Concamerella Culberson, Everniastrum Sipman, Flavoparmelia Hale, Flavopunctelia (Krog) Hale, Karowia Hale, Melanella Esslinger, Myelochroa Elix and Hale, Namakwa Hale, Neofuscella Esslinger, Paraparmelia Elix and Johnston, Parmelia Awasthi, Parmelia Ach., Parmelina Hale, Parmelinella Elix and Hale, Parmelinopsis Elix and Hale, Parmotremastrum Elix and Hale, Platysmatia Culberson and Culberson, Pleurosticta Petrak, Pseudoparmelia Lyng, Pseloparmelia Hale, Punctelia Krog, Relicina (Hale and Kurokawa) Hale, Relicinastrum Elix and Verdon, and Xanthomaculina Hale), have less—usually considerably less—than 80 species each.

The cetrarioid genera, Ahtiana Goward, Cetraria Acharius, Cetrariops Kurokawa, Esslingeriana Hale and Lai, Masonhalea Kärnefelt, Nephromopsis Müller Argoviensis, and Tuckermannopsis Gyelnik, comprise 80–100 species, although much work remains to be done in this group.

When I began my first studies of Xanthoparmelia in 1955, I soon realized that a world monograph could not be completed with the materials then at hand. The genus appeared to have the greatest number of species in Australia and South Africa, the very countries where lichenological research was least active historically and collections the fewest.

In retrospect another serious obstacle to monographing Xanthoparmelia at that time was our imperfect knowledge of the chemistry and the primitive methods then available for identifying lichen substances. Chemistry was destined to be a crucial character in the taxonomy of this genus, but Asahina’s microcrystal tests were no match for the rich chemical diversity once uncovered. It was not until the late 1960s and early 1970s that thin layer chromatography (TLC) was introduced and put into practice sufficiently for lichen taxonomists to benefit fully.

Although for these and other reasons I postponed the goal of a world monograph, I did examine almost all of the approximately 280 type specimens of species and subspecific taxa published in the genus before 1960. Since then many more collections have become available and many new species have been published, filling in gaps that had earlier prevented a coherent treatment. Dr. J.A. Elix has made especially important contributions to the Australian species. He has not only used his profound knowledge of phytochemistry to unravel the complex chemistry of Xanthoparmelia and place it on a firm footing, but has carried out critical taxonomic studies of the 145 Australian species, culminating in a revision (Elix, Johnston, and Armstrong, 1986) that forms an indispensable base for studying the genus.

I myself have had the opportunity to conduct extensive field studies in Australia and southern Africa. All type specimens have been re-examined and literature citations re-checked against the originals. The chemical data have been updated with TLC. I have been able to study and identify many additional specimens in major herbaria and revise older identifications.

Using these data, I feel that now is an appropriate time to present a synopsis of the accepted species and their synonymies with full citation of literature and type specimens, chemistry,
brief synoptic descriptions, and world distributions. This information should provide the groundwork for more intensive local studies that will be needed to achieve a better understanding of this huge genus.

It should be noted that Figures 12–21 and 24–75 have been reduced to 96 percent.

ACKNOWLEDGMENTS.—Special thanks are due Dr. Z. Černohorský, who arranged for loans of Gyelnik’s collections while I was visiting Prague in 1961 early in my studies. Dr. Ove Alborn has very kindly checked much of the literature and given advice on some difficult nomenclatural problems. I have benefited immensely from discussions and exchanges of data on problematic species with Dr. J.A. Elix, who also determined the chemistry of many critical species with Dr. G.A. Jenkins and Jen Johnston. Dr. Chicitla Culberson, and Anita Johnson have also helped with chemical identifications on many occasions. Mr. Dirk Wessels has given assistance during field work in South Africa and SWA/Namibia, and Dr. J.A. Elix and Dr. Nell Stevens have helped me in Australia. Ellen Farr has developed programs used in building a computerized data base for the genus.

Financial assistance over the years has come from the National Science Foundation, the National Geographic Society, and the Smithsonian Institution Scholarly Studies Program.

Lastly, curators of the many museums where type collections of Xanthoparmeliae are preserved have given invaluable help in arranging loans; their cooperation and patience are gratefully acknowledged: AD, ASU, B, BM, BOL, BP, CBG, DUKE, FH, G, GB, H, HO, HBG, KW, L, LD, LISU, M, MEL, MSC, MVM, NY, PC, PE, PRE, PRM, S, TNS, TUR, UPS, VER, W, WU, ZT, and private herbaria of K. Kalb and R. Rosentreter.

History of Xanthoparmelia Research

Approximately 45 lichenologists have described one or more species of Xanthoparmelia (all as Parmelia before 1974), and some 406 species are tabulated in this synopsis. Adding in 195 synonymous names at all ranks as well as 80 dubious or rejected names, we have a total of about 675 published names in the genus.

Linnaeus (1753) did not describe any species now recognized in Xanthoparmelia. Acharius described three: Parmelia camischadalis, P. conspersa (with a β stenophylla and γ georgina), and P. molliuscula. By 1925, the end of the classical period in lichenology, 72 species were recognized as valid in this synopsis had been described, with half of them, as one might expect, published by Müller Argoviensis (14), Nylander (11), Stirton (6), and Vainio (4). None of these workers, however, can be said to have specialized in Xanthoparmelia, and if anything they described proportionately fewer species here than in other Parmelioid groups.

Since 1925, there has been an explosion of names unparalleled in any other lichen genus. It began with V. Gyelnik, a Hungarian lichenologist whose main interest had been the genus Pelitigera. He alone proposed 128 names, 63 at species rank, in Xanthoparmelia. He accomplished all of this—in addition to proposing hundreds of names in other genera—in just nine years, from 1930 to 1938. Gyelnik published hastily in numerous fragmented and poorly organized articles, sometimes forgetting what he had published earlier. He had a truly desperate need for an index to his own work, such as the one later compiled by Sjödin (1954!)

We know relatively few details about Gyelnik’s career. According to Verseghy (1963), he was born in Budapest in 1906. Before receiving his Dr. Phil. degree in 1929, he spent nearly a year in Cairo helping to organize a botanical museum. He returned to Budapest in 1930 to become curator of the lichen collections at the Natural History Museum, where he remained until 1944. He also held a post at the University in Debrecen. Gyelnik published his first scientific article in 1926, at the age of only 20 and the bulk of his research was accomplished between the ages of 24 and 34 (1930–1940) during a period of great political and economic upheaval throughout Europe, including Hungary.

One source of my information about Gyelnik comes from his correspondence from 1930–1933 with the American amateur lichenologist C.C. Plitt (archived in BPI), written in English and German. In one of the earliest letters dated 10 June 1930, Plitt wrote to Gyelnik that he wanted to visit him in Hungary before attending the International Botanical Congress held in England that summer. Plitt did in fact visit Gyelnik in August 1930 and was taken on a field trip with Szatala, Kummerle, and others. Gyelnik married Theresa Hofflinger on 30 May 1931, sending Plitt a wedding invitation. After a six-week honeymoon, Gyelnik returned to his office to find that he had been awarded a travel stipend for lichen studies, but the trip had to be postponed because of an operation for appendicitis. Returning to work again, he found the grant rescinded as a result of economic steps taken by the Gombos administration to counter a bank crisis. In December Gyelnik had another operation for a growth on his forehead.

By the summer of 1932 Gyelnik had found a house and his wife gave birth to a son. Correspondence with Plitt continued with requests for copies of lichen books, including Tuckerman’s Synopsis, duplicate specimens for his newly issued Lichenotheca Parva, and foreign stamps for his personal stamp collection. This warm exchange of letters ended in early 1933 with Plitt’s death.

In 1935, when “Hungarianism” reached a peak in the fascist Gombos administration, it was common for Hungarians with non-Hungarian family names (Gyelnik has a Slavic ring) to change or modify them, especially if they wanted political appointments. Gyelnik prefixed “Köfárágó” to his last name, perhaps facetiously, since this means stone cutter in Hungarian—an occupation in which every lichen collector soon becomes an expert! In any event he was eventually appointed to the post of Head of the Botanical Department at the National Museum in 1942, ending his career as a productive scientist at the age of only 36.
In October 1944, with the Russian army already entering the suburbs of Budapest, Ferenc Szalasi assumed the post of Prime Minister (Nagy-Talavera, 1970). He replaced virtually everyone in the previous Kallay regime, and it was thus that Gyelnik was appointed Minister of Culture and Education (E. Friedmann, personal communication). Szalasi visited Hitler in December 1944 and, still believing that the Nazis would triumph, set up a provisional capital at Sopron, 3 km from the Austrian border for protection. At the same time the Russians installed an anti-fascist government in Debrecen as Budapest was destroyed by fascists and Russians alike. The new government’s first act was to condemn to death all members of the Szalasi regime. Some were executed, some escaped to Austria. Versegghy (1963) says that Gyelnik died at the end of 1944 or early 1945, but Grummman (1974) reported that Gyelnik was killed in an air raid on a railway station in Austria on 15 March 1945. Perhaps his actual fate may never be known.

Gyelnik was a controversial individual who infuriated or at least antagonized virtually every contemporary lichenologist. Yet his correspondence with Plitt reveals a warm and generous person beset by many problems. In 1940 Gyelnik published a “Chronica Botanica Hungarica 1940: I-VI” in Borbasia Nova, a journal he himself founded. In this article his colleague and co-editor of Borbasia, Z. Kárpati, paints a humorous picture of Gyelnik with a caricature in “Monographiae botanicorum hungaricum promodromi I.” Gyelnik is described as “Homo botanicus var. cryptoamans i. lichenologus lus. faflaragoensis [species splinter]!” Diagnosis: Corpus verticaliter valde elongatus, horizontaliter semicrassus. Pedes recti, longi, sat dense setosi (= capreaepedati), cum braccis diu tecti, noctu non obducti, capitibus vulgo exodoratis. Truncus validus, sat latus, rectus, in parte dorsalis cum spina (I). Caput ovoideum, in parte apicali hieme villosa-tomentosum fuscumque, aestate toto glabrescess billiardioglyobiformequae vel interdum brevi- setosum, auriculatum, auribus subrectangularibus, sat robustis, benissime auditis, naso bono et lingua acuta instructum. Consistens dura, tenax, non esculenta. Habitat vulgo in museo botanico budapestinensi, rariter in instituto botanico universitatis debrecencienis.”

Gyelnik’s scientific work matured in definite stages. Starting out in the late 1920s on a strictly local basis, he described many forms and varieties of well-known species. After visiting the Acharian and Nylander collections in Helsinki in 1927, he began to describe more exotic species, especially from Australia and South Africa. He even studied briefly with both Vainio and Rässänen (Grummman, 1974). Later he examined many more type collections, primarily those of Krempe1huber, Müller Argoviensis, and Nylander, and received on loan Stirling’s GLAM collections (Gyelnik, 1938a) and general collections for identification from Bouly de Lesdain, Evans, Hosseus, and Návárovnik. The result of these wide-ranging investigations was the realization that many of his own species were synonymous with earlier names. He then proceeded to synonymize many of them or transfer them to older names with almost clinical care, first under one but often later under another as new discoveries were made.

Sjödin (1954) catalogs many examples of Gyelnik’s nomenclatural jungle. A typical one is the nomenclatural history of Parmelia ioannis-simae (now considered to be a synonym of Xanthoparmelia taraeticata). It was first described as a species, P. ioannis-simae, in 1931, but after establishing the identity of Parmelia imitans (Müller Argoviensis) Gyelnik (now recognized as a synonym of X. somloensis), he transferred it there in 1934 as P. imitans var. ioannis-simae. Still later he examined the type of P. phaeophana and created P. phaeophana f. ioannis-simae (Gyelnik) Gyelnik in 1938. By 1938, the last year that he published in Xanthoparmella, Gyelnik had reduced many of his own and other species in this way to varieties or forms in a regular progression.

Although Gyelnik published 25 more scientific articles from 1939 to 1942, he never again dealt with Xanthoparmella. The reason for this abrupt loss of interest in a genus that had been his primary field of research for nine years will never be known.

When Gyelnik’s contributions are put into perspective, we realize that he had a far deeper, though sometimes garbled, understanding of Xanthoparmella—and other genera—than any other lichenologist of his day and was clearly far ahead of his time. For example, he was the first lichenologist after Nylander to use chemistry as a species character on a large scale, although some may not consider that to his credit. For the most part he employed the well-known but uncritical color tests with KOH and calcium hypochlorite, even though he must have been aware of the microcrystal tests for salazinic acid and other compounds described by Zopf (1903) and Lettau (1914). After Asahina (1934) introduced para-phenylenediamine, Gyelnik restated many specimens with this new color reagent but never published the results. His annotation labels for P tests on his own material in BP are undated but were probably prepared after 1936.

Asahina (1936) also published procedures for microcrystal tests that were far more sophisticated than those of Lettau, providing lichenologists for the first time with a more accurate means of identifying substances responsible for color reactions and ultimately establishing a sounder basis for chemotaxonomy. While Gyelnik acknowledged some help from Asahina in 1938 (Gyelnik, 1938a) for his “im Werden begriffenen Xanthoparmella-Monographie,” he did not attempt to use Asahina’s tests or to cite full chemical tests for three species analyzed by Asahina (Gyelnik, 1938d). On the contrary, he began to have doubts on the accuracy of color tests (Gyelnik, 1938d). His sincere efforts simply did not coincide with the chemical technologies just beginning to bear fruit.

Even as he worked so frantically, Gyelnik took care to designate type collections and carefully annotated them in his neat handwriting. At the same time he followed logical rules of nomenclature, with a few understandable exceptions, more than did some of his contemporaries. Thus it is comparatively
easy to typify his species and locate type specimens. Hillmann (1936, 1939), a very careful worker in Parmelia in the 1930s, was one of Geyelnik's main critics. He objected to his splitting up species and raising forms to "kleinste Arten" (we would now say micromonospecies), asserting that his methods were detrimental to science. Hillmann correctly stated that careful studies in nature and examination of large numbers of specimens are important in gaining a full understanding of the species, a most desirable goal which, unfortunately, few taxonomists achieve. It is true that Geyelnik often saw only one specimen when describing exotic species and did not visit any countries outside of Europe, except Egypt. Both Kušan (1932) and Magnusson (1933) also criticized Geyelnik's work as hasty and ill-conceived. Geyelnik (1934b, 1938d, 1939b) responded to his critics methodically, but the animosity between these lichenologists never healed.

After Geyelnik's last publication on the Xanthoparmeliae in 1938, there was a hiatus of more than 20 years when very few new species in this group were published. In 1959 Dodge published nine African species alleged to be Xanthoparmeliae (eight of these are in fact synonyms of well-known species or belong in other genera). Since 1964 virtually all of the 300 or so additional new species of Xanthoparmelia have been described by five principal authors, Elix (81), Kurokawa and Kurokawa and Filson (31), Hale (175), Nash (16), and Knox and Brusse (19). In other words, more than three-quarters of the valid species in the genus have been published in just 20 years, in contrast to the 200 years for the first 72 species!

It would probably be foolhardy to predict how many species remain to be found, even though all major collecting areas have been visited by one or more lichenologists. Certainly the total may reach 500, making Xanthoparmelia by far the largest genus in the Parmeliaceae.

Taxonomic Characters

Most species of Xanthoparmelia described before 1930 were based on obvious differences in gross external morphology or substrate (rock or soil). At one extreme, Nylander had a narrow species concept, using isidia and soredia, conidia, and chemistry as species characters. By contrast, Müller Argoviensis (1888c:195) categorically rejected chemical species and deemed isidia and soredia to be modifications of "true" species and varieties.

It was not until Geyelnik started publishing so rapidly in the 1930s that lichenologists began to examine the value of these and other characters introduced by him, such as isidial branching and chemical color reactions (Geyelnik, 1931b). Kušan (1932), obviously reacting to Geyelnik's 28 new species published 1930-1931, discussed various characters in considerable detail, particularly for the Parmelia conspersa group in Europe. He felt, for example, that thallus color (both upper and lower surfaces) showed all possible nuances and variations.

Degree of adnation had no value either in his opinion. Isidia were too frequent to have significance or could be treated as forms when isidiate-nonisidate parallels were found. Finally, apothecia appeared to be constant with little variation in height of hymenium or spore size and pycnidia had no value. Of course, Kušan was studying only the few species occurring in Europe.

If we examine more closely the characters actually used by Geyelnik (1931b), a certain degree of consistency is apparent. Chemistry is very basic: "medulla partim alba, partim rubra" (P. serbica) or "similis omnino P. servitiana sed medulla KC+ rubescens non KC-" (P. pseudoservitiana [= X. conspersa]). We know now that some of these color tests were spurious but that others reflected significant chemical differences.

The degree of adnation (Geyelnik, 1934c) was also given considerable importance, as in "subcrustaceus" (P. mougouloii and P. novomexicana) and "typice folicieus" (P. subramigera). Density of rhizines played some role, as in P. cheelli, which has very sparse rhizines. The color of the lower surface was carefully noted, as in "similis P. regis-matthiae [= X. conspersa] sed subus pallidus" (P. canariensis [= X. subramigera]). It is interesting to note that long before this Tuckerman (1860) had observed specimens of "P. conspersa" with a pale rather than the usual black lower surface, a common trait in American populations and in this instance probably referring to X. plittii.

In the same year Nylander (1860:391) also used this character when he described Parmelia conspersa var. hypoclysta (= X. sublaevis).

The presence and branching of isidia (Geyelnik, 1931b) were other species-level characters frequently mentioned by Geyelnik, as "isidii ramosis" (P. bohemica) or "similis P. isidiatae (= X. conspersa) sed isidiis eramosis" (P. korosi-csowae [= X. tinctinal]).

In my first studies of Xanthoparmelia (Hale, 1955) I used the presence of isidia and degree of adnation correlated with chemistry, characters supported later by des Abbeyes (1961). My early work, however, was not concerned with taxonomic questions and all isidiate populations were indiscriminately called Parmelia lusitana.

In 1959 Dodge denied chemistry as a species character, at least as reflected in color tests, but did use lower surface color. By 1964 I had enhanced my treatment of the North American species with mass field studies and concluded that a combination of pale or black lower surface, chemistry, and to a lesser extent adnation, supported by geographical correlations, seemed to provide a reasonable basis for recognizing seven isidiate species, three of them (P. mexicana, P. plittii, and P. subramigera) already described by Geyelnik (Hale, 1964).

These basic characters have been tested and used by workers in Xanthoparmelia for the last 20 years and provided a
workable basis for recognizing species. Furthermore, as the accuracy of techniques for identification of lichen substances has improved, particularly after the introduction of thin layer (TLC) and high performance liquid (HPLC) chromatography, chemistry has played an ever more important role at the species level.

I have listed below the major characters on which species are or could be based in Xanthoparmelia. The frequencies are taken from the 406 species in the synoptic list. I will try to discuss the taxonomic value of most of the characters but our present imperfect knowledge of many aspects of the ontogeny and morphogenesis of lichen structures does not permit us to pass full judgment on them now.

All of the morphological, chemical, and geographical data for the 406 species were entered into a computerized database. This database was searched for any number and combination of characters and used to prepare the keys. Species descriptions were also generated and formed the basis for the final descriptions.

Thallus Color and Texture

Gyelnik (1938a), and before him Kušan (1932), concluded that color tone varied so much as to have little taxonomic value. However, anyone who has done serious field work cannot help but be impressed by the subtle color variations in Xanthoparmelia. Some species are consistently light or bright greenish yellow (e.g., X. colorata, X. hypoprotocetrarica, X. luminosa, X. schenckiana), whereas others are dark greenish to almost brownish yellow (X. mougeotii, X. mougeotina, X. springbokensis, X. synesitia, and X. xanthomelaena). The great majority are rather dull yellowish green. A few pruinose species, such as X. equalis, X. pumila, X. serusiauiii, and some members of the X. schenckiana group, have a whitish cast. Although it is difficult to measure and describe these differences, they are useful as auxiliary characters for identifying species.

Thallus texture is another subtle, variable character. Some species are firm, leathery, and easy to collect, such as most terricolous species in the X. convolula group as well as X. africana, X. australafricana, X. effigurata, X. hypoprotocetrarica, X. namakwa, X. phaeophana, X. somloensis, and X. subpigmentosa. Others are rather fragile and brittle, even when loosely attached and easily collected, e.g., X. denudata and X. molliuscula. These characters are species-specific, but as with thallus color are difficult to quantify.

Surface Features

The upper surface of most Xanthoparmelia species (347 of the 406 total) appears opaque and uniform without any distinguishing markings when viewed at 10x–20x magnification. I define this as a continuous (or emaculate) surface. It may be shiny, especially toward the tips, to dull and opaque or, in the few pruinose species mentioned above, frosty white (Figure 1a). The pruinosity is caused by surface deposits of rather deformed crystals, presumably some form of calcium oxalate (Figure 1c). In all these species the underlying cortex is uniformly thickened.

The remaining 59 species have distinctive, irregularly shaped whitish surface markings, so-called maculae (Elix, Johnston, and Armstrong, 1986). One group of 15 species has very marked white maculae just visible to the naked eye (Figure 1b). Such maculae were first reported by Nylander (1860) in X. hypoleia. This group includes X. manumensis, X. notata, X. pantherina, and X. yowaensis from Australia; X. cedrus-montana, X. dysprosa, X. effigurata, X. karoo, X. leucostigma, X. namakwa, and X. protodyprosia from South Africa; and X. burmeisteri, X. hypoleia, X. hypoprotocetrarica, and X. pseudohypoleia from both Australia and South Africa. None is known from South America, North America, or Europe. These species may be called effigurate-maculate. The orientation of the maculae is correlated with the underlying vaulted cortical structure described below. Most members of this group are extremely close morphologically. For example, species in the X. hypoleia group (X. burmeisteri, X. cedrus-montana, X. dysprosa, X. hypoleia, X. hypoprotocetrarica, X. manumensis, X. mollis, X. notata, and X. pseudohypoleia) have rather narrow, elongate lobes, sparse rhizines, and a black lower surface. On the other hand, they are chemically very diverse. Three other species are effigurate-maculate but do not belong to the X. hypoleia group: X. effigurata and X. namakwa have broader lobes and denser rhizines, and X. leucostigma has a pale lower surface.

A second group of 44 maculate species has distinct but more subtle whitish markings on the thallus surface that are visible only with a hand lens (Figure 1d). I have called these simply white-maculate. These maculae apparently have the same origin as effigurate maculae but with a less well-developed vaulted cortex. The best known examples are the well-known X. somloensis, as well as X. africana, X. camtschadalis, X. phaeophana, X. protomatrae, and X. synesitia. They are also characteristic of X. amphixantha, X. aurifera, X. concomitans, X. pseudoamphixantha, X. pseudohungarica, X. reptans, X.
subdiffuens, X. substrigosa, X. willisi, and others. Curiously, few species classified as white-maculate or effigurate-maculate have soredia, and only X. treurensis and X. xizangensis are isidiate.

INTERNAL ANATOMY

The internal anatomy (Figure 2a) and ultrastructure of Xanthoparmelia species appear to be rather uniform, judging from the available descriptions. There are three aspects which have potential as specific characters, epicortical structure, upper cortex, and lower cortex.

EPICORTICAL STRUCTURE.—All species of Xanthoparmelia studied so far have a pored epicortex (Hale, 1973) (Figure 2b). There is a great range in pore size and shape (Figures 3–4) with some consistency at the species level. In one case, for
example, two closely related species, *X. austroafricana* and *X. phaeophana*, may have similar, unusual elongated pores (Figure 4b). On the other hand, other specimens of both of these species show normal orbicular pores. However, many more than the 150 specimens I have examined should be studied before we can determine if this character has any taxonomic value; present indications are that it does not.

Upper Cortex.—Being epicorticate, *Xanthoparmelia* species usually have a fairly thin cortex with more or less loosely arranged paraplectenchymatous to palisade-oriented cell tissue 10–18 μm thick (Figure 2b). This is uniformly the case with species having a continuous surface, the vast majority of the genus.

Species with an effigurate-maculate surface have a unique vaulted structure, similar to (but not as strongly developed as) that in *Xanthomaculina hottentotta* (Hale, 1985b). Dense intrusions of cortical tissue, as in *X. notata* (Figure 2c), form the darker greenish parts which contrast with the white effigurate maculae and have on their surface few if any epicortical pores. The intervening chambers are capped with a
thin epicorticate cortex and lie below the actual white markings.

In white-maculate species, such as X. camtschadalis and X. somloensis (Figure 2d), this vaulted cortical structure is less pronounced. Epicotical pores appear to be scattered uniformly over the surface, whether underlain by a thicker cortex or not.

LOWER CORTEX.—This layer is uniform in Xanthoparmelia, and consists of a compact paraplectenchymatous layer 3–4 cells thick (Figure 5a).

RHIZINES.—Most Xanthoparmelia species have moderately coarse, unbranched solid rhizines, 0.2–2 mm long and 0.2–0.8 mm in diameter. Long rhizines may become sparsely furcate, as in X. australiana (Figure 5b) and X. substrigosa, or splayed at the tips. As a rule they are concolorous with the lower surface, although there are some exceptions, especially among canaliculate species, such as X. amphixantha, X. concomitans, X. reptans, and X. willisi. In these species the long sparse rhizines are dark brown to black, contrasting strongly with the very pale yellowish brown lower surface (Figure 10). An interesting feature of Xanthoparmelia is that all species appear to lack oil bodies in the rhizines, whereas other genera of the Parmeliaceae have them (Ralph Common, unpublished data).

Rhizine density varies widely. Of the 406 species in this synopsis, 246 are described as having moderate rhizine density, including familiar X. camtschadalis, X. conspersa, and X. somloensis. Another 144 species have sparse rhizines, many of them in species with a black, sometimes rugose lower surface, e.g., X. cheelli, the X. hypoleia group, X. constrictans, X. hyporrhutia, and X. rubrireagens. At the other extreme, X. africana, X. perviensis, X. substrigosa, and X. sulcifera are characterized by long dense rhizines, and five other mostly Australian species (e.g., X. bellata and X. metastrigosa) have comparatively dense but shorter rhizines.

Rhizines are essentially lacking in seven species, X. lobulifera, X. mollis, X. norchlorochara, X. pachyclada, X. suberadicata, X. subruginosa, and X. treurensis.

In many cases density varies from specimen to specimen in the same species and descriptions bridging the character states such as “sparingly to moderately rhizinate” are required. Some species with sublinear lobes may even have rhizines concentrated toward the lobe tips, leaving the center almost bare, as in X. phaeophana or X. subcolorata. Obviously we need better guidelines on how to quantify rhizine density in order to compare species more accurately. In any event rhizine density alone is probably not acceptable now as a species character in the absence of other correlating characters.

THALLUS ADNATION

Thallus adnation is a measure of how closely a lichen is attached to the rock or soil substrate. No other genus in the Parmeliaceae has the broad range found in Xanthoparmelia, excepting perhaps Neofuscella and to a much lesser extent Paraparmelia. Along with other workers in the field I have used five broad categories as follows:

1. Very tightly adnate: Thallus very tightly appressed to the rock substrate, often appearing areolate at the center. I have used this description for 34 species, the majority of which occur in Australia or South Africa. Some better known ones are X. alectoronica (Figure 25a), X. brunntaleri (Figure 29b), X. conspersula (Figure 33d), X. exilis (Figure 40b), X. keralensis, X. mougeotii (Figure 6), X. neorimalis, X. worcespier (Figure 74d), and X. xanthomelaena (Figure 74f).

This category includes most of the species called “subcrustose” by Elix, Johnston, and Armstrong (1986). I prefer not to use the term subcrustose because of confusion with the closely related, truly subcrustose species of Karoowia (Hale, 1989c) (previously classified as Xanthoparmelia).

The thallus of these often inconspicuous species ranges from 0.5 to 10 cm in diameter (usually 2–4 cm). They cannot be removed from the rock without considerable damage and fragmentation. Minimum lobe width varies from 0.2 mm in X. mougeotii (Figure 6) to 0.7 mm in X. applicata. The average for the group is 0.3 mm. Maximum width is 0.5–1.5 mm. In this respect the very tightly adnate species mimic not only Karoowia but also marginally lobate Lecanora species such as Lecanora muralis (Schreber) Rabenhorst, which are differentiated by the lack of rhizines.

2. Tightly adnate: Thallus tightly adnate or appressed on the substrate. The thallus is 1–10 cm broad and the center remains clearly lobate with the lobes varying from 0.2 to 1.0 mm in width. The average lobe width for this group is 0.6 mm and the lobes vary from sublinear to subirregular. Maximum width is 0.6–2.5 mm. Portions of the thallus may be scraped off with a knife, especially when wet, but dry specimens must be collected with the rock substrate to obtain a good specimen. There are 70 species described as tightly adnate, including, for example, X. lineola (Figure 48d), X. novomexicana, X. oleosa, and X. parvincerta (Figure 58b), with most being rather rare Australian or southern African endemics.

3. Adnate: Thallus fairly closely attached to the substrate but with broader, generally sublinear to subirregular lobes that are contiguous and overlapping and with obuse to more or less round tips. Minimum lobe width varies from 0.3 to 3.0 mm, averaging 0.9 mm, the maximum range being 1–7 mm. The thallus, 2–12 cm broad, can often be removed intact from the substrate, at least in part, especially when wet, but herbarium specimens often come attached to rock, depending on how much care the collector has used. This type of adnation is used to describe 146 species of Xanthoparmelia, including most of the familiar ones in temperate zones such as X. conspersa (Figure 33c), X. cumberlandia (Figure 8), X. filarszykana (Figure 40e), X. plittii, X. subdecipiens (Figure 34c), X. cumberlandia (Figure 40e), X. plittii, X. subdecipiens (Figure 34c).
66e), and X. tinctina (Figure 71a).

4. Loosely attached: Thallus moderately adnate to nearly free growing but with at least some basal attachment (as in the X. hypoleia group or in X. walteri). The whole thallus, often attaining a diameter of 10–20 cm or more, is easily peeled from the substrate with a knife or even by hand and specimens for herbaria are rarely collected with the rock substrate. The lobes are usually sublinear, separate and sometimes divaricately branched, subascending in some species, and with sparsely to moderately developed, rarely furcate rhizines. Lobe width is extremely variable and reaches 6–10 mm in larger species such as X. maxima (Figure 49f), X. phaeophana (Figure 58f), and X. substrigosa (Figure 68f) but may be quite narrow (0.1–0.6 mm wide) and stringy in other species (e.g., X. benyovszkyana (Figure 28c), X. eradicata (Figure 39b), X. esterhuyzeniae (Figure 39d), X. metabolophora (Figure 50c), X. planilobata (Figure 59c), X. rubrireagens (Figure 62e), and X. tenuiloba (Figure 70b)). Excluding these seven stringy species with lobes less than 0.5 mm wide, the average minimum lobe width is 1.0 mm. Among the more common of the 131 species classified here are X. australisica (Figure 27a), X. furcata (Figure 41d), X. protomotrae (Figure 60a), X. somloensis (Figure 65c), X. taractica (Figure 69e), and X. tasmanica (Figure 69f).

5. Free growing: Thallus vagrant, growing free on soil and lacking any attachment, the lobes plain to moderately or strongly convoluted. The leathery thalli may be intact or fragmented into lobe-sized parts as in X. camtschadalis (Figure 30c), X. chlorochroa (Figure 31e), and X. convoluta (Figure 34b). Elenkin (1901b) graphically described desert forms of X. desertorum which are blown about by the wind. Lobe width is quite variable, from 0.5 mm in X. concomitans to 3 mm in X. norconvoluta, although some species have lobes at least 10 mm wide when unrolled. The lobes are convoluted, canaliculate, or channelled, and the thalli tend to curl up when dry. This very distinctive group includes 25 species: X. amphixantha (Figure 25e), X. aurifera, X. australiensis (Figure 27b), X. beatricea (Figure 28a), X. bellatula (Figure 28b), X. camtschadalis (Figure 30c), X. chlorochroa (Figure 31e), X. concomitans, X. convoluta (Figure 34b), X. desertorum (Figure 35d), X. epigaea (Figure 38f), X. erosa, X. idahoensis (Figure 44d), X. kasachstania (Figure 46d), X. kotisephola (Figure 46f), X. lipochlorochroa (Figure 48e), X. neochlorochroa (Figure 53b), X. norchlorochroa (Figure 55c), X. norconvoluta, X. pachyclada (Figure 57e), X. reptans (Figure 62d), X. subdiffuens (Figure 66f), X. subflabellata, X. vagans (Figure 72e), and X. willisii (Figure 74b).

The five categories of adnation outlined above obviously intergrade broadly and not every specimen can be rigidly assigned to one. Some might be called tightly adnate by one lichenologist, adnate by another. However, few would disagree on the “typical” species. For many species, however, overlapping descriptions are necessary, as “thallus tightly adnate to adnate,” reflecting modifications imposed in extreme habitats. On the other hand, embracing too wide a range, as “thallus very tightly adnate to adnate,” may indicate that two closely related species are being lumped.

One can find series of populations with identical chemistry and morphology which can be, and usually are, separated into
two or more distinct, adnation-based species. For example, in North America we have salazinic acid-containing \textit{X. lineola} (adnate), \textit{X. coloradoensis} (loosely adnate), \textit{X. wyomingica} (loosely attached and convoluted), and \textit{X. chlorochroa} (free growing), with a few troublesome intermediates which defy exact identification. We could fill in the series with Australian \textit{X. neorimalis} (very tightly adnate). Other examples are the stictic acid-containing group of \textit{X. substenophylloides} (tightly adnate)—\textit{X. conspicra} (adnate)—\textit{X. isidiascens} (loosely attached) and \textit{X. endochrysea} (tightly adnate)—\textit{X. weberi} (adnate). Other African examples are \textit{X. subamplexuloides} (tightly adnate)—\textit{X. amplexuloides} (adnate); and \textit{X. karoo} (adnate)—\textit{X. hypoprotocetrarica} (loosely adnate). However, adnation is not always the only character used to separate these species.

LOBATION

Lobation is used to describe the width, branching, and orientation of thallus lobes. Of these only width can be quantified. It is fairly easy to measure the width of linear and sublinear lobes, which tend to have a uniform width throughout the length of the branches. There is greater variation in subirregular lobes, which tend to be round and wider at the tips. In these species I tried to select an axillary point where branching begins, not the point where the lobe broadens out to the maximum.

Actual measurements were calculated from photographs of specimens (often types) enlarged two to ten times and placed on a digitizing tablet linked to a computer. Ten randomly selected mature lobes from a single specimen were used to compute minimum, maximum, and average lobe width. The level of accuracy is about 0.1 mm, far better than can be obtained with a millimeter ruler under a binocular microscope. The final measurements of lobe width given in the species descriptions represent the computerized values enhanced where necessary with direct measurements from many different thalli.

Relatively long, narrow, little-branched lobes of uniform width are usually called linear or sublinear. The apices tend to be blunt and the lobes separate to divaricately branched. Many
Figure 7.—Loosely adnate thallus adnation of *X. isidiaescens*.

Figure 8.—Laciniate thallus of *X. cumberlandia* (×2).
soil-inhabiting and loosely adnate species have this configuration. I have described 21 species as having linear lobes. All of these are loosely adnate and vary in width from 0.1–0.3 mm (X. esterhuysseniae, Figure 39d) to 1–2 mm (X. subnuda, Figure 61e), with most being 0.5–1 mm wide. Other examples are the X. hypoleia group, X. metamorphosa (Figure 50c), X. neoreptans (Figure 53f), X. suberadicata, and X. tenuiloba (Figure 70b).

The majority of the species (238), are called sublinear (see Figure 8). They have relatively elongate lobes which are more frequently branched and irregular in outline than the linear species. This category includes a large group of 40 species classified as very tightly adnate or tightly adnate, such as X. exililima (Figure 40b), X. minuta, and X. mougeotii (Figure 6), where minimum lobe width is less than 0.5 mm. The remaining species are usually adnate or loosely adnate and have a minimum lobe width of 0.5–3 mm, as in X. angustiphylla (Figure 26b), X. camtschadalis (Figure 30c), X. somloensis (Figure 65c), and X. tasmanica (Figure 69).

The third category, subirregular, describes 147 species in the genus, including, for example, X. conspersa (Figure 33c), X. cumberlandia (Figure 8), X. mexicana (Figure 50d), X. tinctina (Figure 71a), and X. ulceroasa (Figure 72b). Minimum lobe width is 0.4–3 mm, most species falling in the range 1–3 mm with a maximum width of 3–9 mm in X. maxima (Figure 49f). The lobes are more irregularly branched and widened, contiguous to imbricate and more round in outline apically than those called linear or sublinear. The thalli are usually tightly adnate or adnate.

As with thallus adnation, there is considerable overlap in lobe configuration and I often use overlapping character states, such as subirregular to sublinear, in the descriptions.

Lobe margins are usually smooth and entire, as opposed to crenate, and sometimes black-rimmed. Gyelnik (1938a) eventually disregarded a black rim as a diagnostic character, but it can be a useful and stable character to separate some species, such as black-rimmed X. pseudocongensis and concolorous-rimmed X. substenophylloides.

As in most foliose lichen groups, small lobes (secondary laciniae) may regenerate from the margins of main lobes, especially towards the center of the thallus with age. Although secondary laciniae may be found in almost any species of Xanthoparmelia, relatively few species regularly produce them. A good example is X. cumberlandia (Figure 8) as well as about 40 other species, such as X. angustiphylla (Figure 26b) and Australian X. digiiformis, and X. glareosa. Several Australian species, X. examplaris (Figure 40a) and X. incrustata, terricolous X. bellatula (Figure 28b), X. eliftii, and X. terrestris (Figure 70d), have laciniae with a convoluted lower surface. The South African X. microlobulata (Figure 50e) is covered with tiny lobules.

Another interesting group of 10 terricolous species has suberect secondary laciniae which become subteterete or terete in cross section with no dorsiventrality, almost seeming like monstrously developed isidia. This group includes X. aggregata (Figure 24d), X. alternata, X. amphixanthoides (Figure 25f), X. durietzii (Figure 37d), X. mulliucala (Figure 51b), X. neowymingica (Figure 55a), X. norpumila, X. pulnila (Figure 61c), and X. tolucensis (Figure 71b). The extreme example of this is X. cylindriloba (Figure 35a), a curious high elevation species in Kenya which consists almost entirely of terete lobes.

Other lobe characters are used to describe species. Xanthoparmelia constricans (Figure 33f) and X. endochromatica (Figure 38b), among a few others, have irregularly constricted lobes. Other species have a strongly convex rather than plane lobe surface, such as X. effigurata (Figure 37f), X. inflata (Figure 45b), X. namakwa (52b), X. serustiaxxii (Figure 64e), and X. tunidosas (Figure 72a). An extreme case is inflated-bulbile X. tonioiodes (Figure 71c). Most species have a smooth surface, but some, such as X. granulata (Figure 42c), X. paradoxa (Figure 57f), X. perrugosa (Figure 58d), and X. springbokenks (Figure 65d), are conspicuously rugose at maturity. Finally, the majority of the species develop transverse cracks on the older parts of the thallus.

LOWER SURFACE

There are three main characters of the lower surface that are used to delimit species: planeness, color, and nature of rhizines.

LOWER SURFACE PLANENESS.—Of the 406 species of Xanthoparmelia, the great majority, some 361, almost all saxicolous, have a plane or flat lower surface more or less uniformly vested with rhizines. Familiar species are X. conspersa, X. cumberlandia, X. somloensis, and X. tasmanica. A few, such as X. denudata, X. hyporyhtida, X. planilobata, X. rubnireagens, X. subcolorata, and X. walleri, are conspicuously rugose at maturity. The lower surface is most often shiny but becomes dull in some species with a black lower surface, as the X. schenckiana group and the X. walleri group. In X. denudata, X. hyporyhtida, X. subcolorata, and even X. phaeophana, the lower surface appears to disintegrate with age, leaving a whitish eristhizine area of exposed hyphae at the center, or in the case of pigmented species such as X. denudata and X. subcolorata an orange or ochre colored area.

Twenty-five species have a convoluted lower surface; that is, the lobe edges turn downward and roll inward (Figure 9). Of this conspicuous edges, the following species are rather weakly convoluted in that the rhizines are more or less visible on the incompletely involuted lower surface: X. duplicata (Figure 37c), X. eliftii, X. epigaea (Figure 38f), X. leonora (Figure 48b), X. neowymingica (Figure 55a), X. staendaellii (Figure 65e), X. subdistorta (Figure 67a), X. sulcifera, X. terrestris (Figure 70d), and X. wyomingica (Figures 9, 74e). Another group of species has rather strongly convoluted lobes but still not forming tubes: X. camtschadalis (Figure 30c), X. chlorochroa (Figure 31e), X. eosa, X. kasachstania (Figure 46d), X. kotisephola (Figure 46f), X. lipichlorochroa (Figure 48e), X. neochlorochroa (Figure 53b), X. norconvoluta, and X.
vagans (Figure 72e). The remaining species have more strongly convoluted lobes that form tubes which, when turned over, seem to lack dorsiventrality: X. beatricea (Figure 28a), X. convoluta (Figure 34a), X. desertorum (Figure 35d), X. norchlorochroa (Figure 55c), X. norconvoluta, and X. pachyclada (Figure 57c). Of course the variation in one species may span moderately to strongly convoluted.

A final small group of 20 rather closely related species have a canaliculate lower surface which is barely or not at all convoluted and with the margins being somewhat raised and lighter colored than the rest of the surface (Figure 10). Rhizines are usually only very sparsely produced and are often much darker than the lower surface. Included here are X. aggregata (Figure 24d), X. alternata, X. amphixantha (Figure 25e), X. amphixanthoides (Figure 25f), X. aurifera, X. bellatula (Figure 28b), X. benyowszkyana (Figure 28c), X. callifolioides (Figure 30a), X. concomitans, X. idahoensis (Figure 44d), X. molliscula (Figure 51b), X. neoreptans, X. norpumila, X. peruviensis (Figure 58e), X. pseudoamphixantha (Figure 60d), X. pumila (Figure 61c), X. reptans (Figure 62d), X. salamphixantha (Figure 63c), X. subflabellata, and X. willsi (Figure 74b). Most of these are terricolous, but, unlike the convoluted species, generally remain flat or curl upward when dry.

LOWER SURFACE COLOR.—Color of the lower surface has been used in many foliicolous lichen genera as a species character (Elix, Johnston, and Armstrong, 1986; Filson, 1982) although, as with many other lichen characters, we know nothing of the origin and morphogenetic or adaptive significance of this trait. As a general rule there are two character states: black (carbonized, with a nonextractable black pigment) and pale (noncarbonized), varying from nearly ivory white to pale or darker brown. A few species with dense concentrations of skyrin (especially X. denudata, X. luminosa, X. subcolorata, X. subdomokosii, and X. subpigmentosa) appear to have an orange or mottled brown-orange lower surface.

Some 162 species of Xanthoparmelia, including widespread X. conspersa and X. tasmanica, have a constantly black lower surface. There may be a marginal dark brown zone but the

Figure 9.—Convoluted lobes of X. wyomingica.

Figure 10.—Canaliculate lower surface of X. pseudoamphixantha (Hale 68538) (>10).
center is always jet black and the rhizines dark brown to black. All, except for convoluted X. norchlorochroa, have a plane lower surface.

At the other extreme are 244 species, more than half of the genus, which have a pale to moderately brown lower surface and concolorous rhizines. Often the marginal zone is darker than the center. Representative species here are X. camtschadalis, X. cumberlandia, X. filarszkyana, X. flavescentireagens, X. lineola, X. mexicana, X. phaeophana, X. plitii, X. protomatae, X. somloensis, and X. ulcerosa. Fifty-five of these species have a consistently darker brown but not blackening lower surface. The best examples are X. furnata and X. scabrosa.

The importance of lower surface color as a species character has not been challenged. There is a group of at least 14 species pairs, one with a pale lower surface and one with a black one. The species are otherwise identical in chemistry and morphology.

<table>
<thead>
<tr>
<th>Pale Below</th>
<th>Black Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. amplexula</td>
<td>X. thamnoides</td>
</tr>
<tr>
<td>X. barklyensis</td>
<td>X. aliphatica</td>
</tr>
<tr>
<td>X. cumberlandia</td>
<td>X. angustiphyla</td>
</tr>
<tr>
<td>X. furnata</td>
<td>X. dichotoma</td>
</tr>
<tr>
<td>X. namakwa</td>
<td>X. effigurata</td>
</tr>
<tr>
<td>X. neopropagoides</td>
<td>X. substenophyllides</td>
</tr>
<tr>
<td>X. neosynestia</td>
<td>X. synestia</td>
</tr>
<tr>
<td>X. oleosa</td>
<td>X. nigralesia</td>
</tr>
<tr>
<td>X. plitii</td>
<td>X. conspersa</td>
</tr>
<tr>
<td>X. psoromifera</td>
<td>X. nigropsoromifera</td>
</tr>
<tr>
<td>X. scabra</td>
<td>X. verdonii</td>
</tr>
<tr>
<td>X. subramigera</td>
<td>X. mbabanensis</td>
</tr>
<tr>
<td>X. subsorediata</td>
<td>X. wrightiana</td>
</tr>
<tr>
<td>X. ulcerosa</td>
<td>X. microspora</td>
</tr>
</tbody>
</table>

ISIDIA

Isidia occur in 118 species, about 29% of the total 406 Xanthoparmeliae. This is of the same order of magnitude as most other Parmeliaceae genera. With only two exceptions (X. trewezensis and X. xizangensis) they are absent in species with a maculate or efigurata-maculate cortex as well as the free-growing soil species. There is no apparent correlation between the presence of isidia and either chemistry or color of the lower surface.

Although Gyelnik (1931a:157) carefully distinguished the cylindrical isidia of Parmelia isidiate (= X. conspersa) from the barrel-shaped (“kugelig”) isidia of P. korosi-csmsae (= X. tinctina), variations in isidial structure were not fully appreciated until Kurokawa and Filson (1975) and Elix (1981) began to distinguish between cylindrical, globose, and pustular types, many of which were first described from Australian species. These isidial types are relatively easy to recognize but the total range of variation has not yet been established. There are two basic shapes, cylindrical and globose. The diameter of isidia given in the species descriptions were determined from SEM photographs taken at 150x for all the species, most of which are illustrated in Figures 11-23. Isidial height was determined under a binocular.

Cylindrical isidia are more or less uniformly thickened and entirely corticate. The tips are entire and syncorticate and may be quite shiny or blackened (Figures 11a, b). These isidia are identical with those found in other typically isidiate foliose genera. In Xanthoparmelia there are 73 isidiate species of this isidial form, among them X. amplexula (Figure 12g), X. australasica (Figure 13b), X. conspersa (Figure 14a), X. mexicana (Figure 17b), X. mougeotina (Figure 17e), X. plitii (Figure 18g), and X. subramigera (Figure 20b). The isidia may remain simple, commonly 0.02-0.2 mm in diameter and up to 2 mm high. They may also branch and even form dense coralloid masses, as in X. antiferiformis (Figure 12f), X. conspersa, and X. neotinctina. Gyelnik’s emphasis on branching density was misplaced, according to our present knowledge. On the other hand, diameter of the isidia appears to be a useful character for separating X. australasica (Figure 13b) and X. isidilgera (Figure 13i). As a rule, the smaller the thallus and lobes, the smaller the isidia, with a rough correlation between lobe width and isidial diameter. Naturally there are a few exceptions, as narrow lobed X. phillipsiana, which has abnormally large isidia (Figures 18e, 59a).

The second type of isidium, the globose form, is generally short and inflated or basally constricted, 0.07-0.2 mm in diameter and usually less than 0.2-0.3 mm high with little if any branching. Except for X. tinctina, which remains syncorticate, they often appear to be hollow or dactyliform or at least break open very easily. At maturity they erode but usually do not become sorediate, a condition which Elix, Johnston, and Armstrong, (1986) call erumpent. Viewed under SEM, the isidial tip of the majority of species appears to be loosely epicorticate with the epicortex finally breaking down (Figures 11c, d). Here we find a distinctive group of 33 species, almost all in Australia and South Africa, with typical examples being X. centralis (Figure 13g), X. congestis, X. flindersiana, X. globulifera (Figure 11c), X. isidiosa (Figure 16a), X. kalbii (Figure 16c), X. praegnans (Figure 18h), and X. tenacea (Figure 20f).

In a few species with cylindrical isidia the apical portion breaks down and becomes pustulate or pustulate-sorediate. Species with these so-called pustulate isidia include the mostly Australian species X. alexandrensis (Figure 12e), X. consipata, X. cordillerana (Figure 14b), X. pustuliza (Figure 19b), X. scabrosa (Figure 19e), and X. verdonii (Figure 21c). As a group these species are probably not distinct from globose isidiate species, and there is the expected variation in isidial shape from globose to cylindrical.

There are two sets of species which have identical chemistry (norlarbade) and morphology except that one has normal.
Figure 11.—Closeup of isidial tips with SEM: a, X. catarinae (Poeschmann-Hájková 761) (syncorticate); b, X. consociata (Hale 59409) (syncorticate); c, X. globulisera (Day 10848 in CBG) (epicorticate); d, X. lavicola (Amable 600, lectotype in BP) (epicorticate).
Figure 12.—Isidia of Xanthoparmelia species with SEM: a, X. adleri (Adler s.n.); b, X. afrolavicola (Hale 74104, holotype in US); c, X. ajoenis (Egan 7123); d, X. alectoronica (López and Smith 21216A, isotype in US); e, X. alexandrensis (Elis 11541); f, X. amableana (Amable 653, lectotype in BP); g, X. amplexula (Hale 58498); h, X. amplexuloides (Hale 78874); i, X. antleriformis (Hale 59552).
FIGURE 13.—Isidia of Xanthoparmelia species with SEM: a, X. areolata (Hale 76267, holotype in US); b, X. australasica (Bartlett s.n., isotype in BM); c, X. bollingalliana (Elix 20490, holotype in CBG); d, X. blackdownensis (Verdon 5234, holotype in CBG); e, X. capensis (Hale 74046, holotype in US); f, X. catarinae (Poeschmann-Hdíková 761, holotype in US); g, X. centralis (Elix 11172, holotype in CBG); h, X. clivorum (Brusse 3069, holotype in PRE); i, X. consociata (Hale 59409).
Figure 14.—Isidia of Xanthoparmelia species with SEM: a, X. conspersa (Pfitz 10608); b, X. cordilleriana (Hale 66597); c, X. coreana (Hale 29444); d, X. dayiana (Hale 68892); e, X. diadeta (Hale 81219); f, X. dierythra (Hale 23628); g, X. endochrysea (Schweinfurth s.n., lectotype in G); h, X. evernica (Hale 75120); i, X. exillima (Hale 58495).
cylindrical isidia and one pustulate isidia: X. amplexula and X. scabrosa, both with a brown lower surface; and X. thamnoides and X. verdonii, both with a black lower surface.

A third type of isidium may be called bullate or pustulate. These are consistently larger than either cylindrical or globose isidia, at least 0.2–0.3 mm in diameter. In a few cases such as X. granulata, they are close to the true pustules of lichens such as Flavoparmelia baltimoresis (Gyelnik) Hale, where the pustules erupt into coarse soresa. In Xanthoparmelia they may burst open and become granular-soresate or remain entire. Species which I include here are X. coneruptens, X. eruptens (Figure 39c), X. granulata (Figure 42c), X. glomerulata, X. pustulifera (Figure 61d), X. pustulosorediata (Figure 61f), X. seleruptens (Figure 63d), X. sanienesis (Figures 19d, 63f), and X. subbullata (Figure 66b), all confined to Africa.

Isidia have had considerable importance as a species character since the days of Nylander. Most lichenologists have used them consistently in recognizing species, except for Müller Argoviensis (1888c:195) and a few modern workers (Tehler, 1982). There are, however, not as many isidiate-nonisidiate species pairs in Xanthoparmelia as one might imagine, considering the large number of isidiate species. Few have been adequately studied in the field:

<table>
<thead>
<tr>
<th>Nonisidiate</th>
<th>Isidiate</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. alboacarciata</td>
<td>X. treurensis</td>
</tr>
<tr>
<td>X. angustiphylia</td>
<td>X. conspersa</td>
</tr>
<tr>
<td>X. arida</td>
<td>X. jorandia</td>
</tr>
<tr>
<td>X. californica</td>
<td>X. dierythra</td>
</tr>
<tr>
<td>X. cumberlandia</td>
<td>X. plititia</td>
</tr>
<tr>
<td>X. dissisipila</td>
<td>X. fisonii</td>
</tr>
<tr>
<td>X. eaeodes</td>
<td>X. thamnoides</td>
</tr>
<tr>
<td>X. luminosa</td>
<td>X. subluminosa</td>
</tr>
<tr>
<td>X. proximata</td>
<td>X. minuta</td>
</tr>
<tr>
<td>X. psoromiferia</td>
<td>X. lavicola</td>
</tr>
<tr>
<td>X. stenoparonica</td>
<td>X. keranelis</td>
</tr>
<tr>
<td>X. submersa</td>
<td>X. transvaalensis</td>
</tr>
<tr>
<td>X. tucscenona</td>
<td>X. ajensis</td>
</tr>
</tbody>
</table>

The remaining isidiate species of Xanthoparmelia appear to have no extant parent morphs although some will undoubtedly be found with more intensive field collecting.

SOREDIA

Soredia occur in only 13 species of Xanthoparmelia: X. aurifera, X. concomitans, X. copotaxiensis, X. erosa, X. farinosa (Figure 40c), X. ferraroiana, X. microspora (Figure 50f), X. mougeotii (Figure 51e), X. submougeotii (Figure 61d), X. ulcerosa (Figure 72b), X. wildeae (Figure 74a), and X. xanthosorediata (Figure 75b). This is far fewer species than one would predict in a typical foliose genus where 30% or more may be sorediate. The soralia are all laminal and orbicular. The greatest number of sorediate species occurs in South America and Australia, but there are no species in common between these two continents. The only one in the northern hemisphere is pantemperate X. mougeotii. Sorediate-
nonsorediate morphs are clearly developed in X. amphiantha-
X. aurifera, X. convoluta-X. erosa and perhaps X. reptans-X. concomitans.

Reproductive Structures

APOTHECIA

Apothecia have been found in 254 of the 406 species in the genus. Usually they are adnate to sessile in very tightly adnate or tightly adnate species, and adnate to subispititate in loosely attached species. The disc is chestnut brown or lighter and plane to somewhat concave. The diameter varies from 0.3–1 mm in very tightly adnate species to 10–15 mm in large, loosely attached species. As one would expect, they occur more frequently in nonisidiate species (80%) than in the isidiate species (55%). Apothecia are known for four of 13 sorediate species.

The ontogeny of apothecia in the Parmeliaceae has been given relatively little attention compared to the crustose families. According to Henssen (1981), the Parmeliaceae are separated from other families in the suborder Lecanorineae by the formation of a meristematic cupular exciple and a complicated differentiation of the centrum. There is a hyaline layer below the hypothecium, interspersed by connecting hyphae, a unique feature among lichenized ascomycetes. The genera in the family agree fairly well in the main steps of development.

The only detailed study of a Xanthoparmelia, X. conspersa, was published by Letrouit-Galinou (1970), who considers it to have essentially the same developmental pattern as Parmelia acetabulum. Henssen (1981) discusses the development of asci and ascocarps in Parmelia exasperata and emphasizes the uniqueness of a hyaline layer below the hypothecium. Bellemère and Letrouit-Galinou (1981) speak of a Parmelia-type ascus, which has an apical dome developed into a plug with three concentric regions, lacks a subapical pad, and lacks or has an extremely reduced pendant organ. These observations were based on P. acetabulum, now recognized in the genus Pleurosticta Petrak (Lumbsch, Kothe, and Elix, 1988).

While Hawksworth (1988) states that excipular structure in the Parmelioid genera shows considerable variation (without citing any specific examples) and that some of the species of Xanthoparmelia will ultimately be recognized under other excipular-based generic names, no one so far has discovered any significant differences in structure and development of apothecia in the Parmeliaceae (sensu stricto).

SPORES—While apothecia may be quite well developed, spores are sometimes immature or absent. Where good data are available (in 219 of the 233 species with apothecia), spore size is extremely uniform, as previous workers have often noted (Küster, 1932; Elix, Johnston, and Armstrong, 1986). Width varies from 4–8 μm and length from 6–13 μm. Data on maximum spore size distribution for 218 fertile species is summarized in Figure 22.
Figure 15.—Isidia of Xanthoparmelia species with SEM: a, X. exuviata (Hale 66632); b, X. fitsonii (Elix 16639); c, X. geesterani (Degelius SA-451); d, X. globisidiosa (Hale 72030, holotype in US); e, X. gongylodes (Elix 18008, holotype in CBG); f, X. harrisi (Hale 81203, holotype in US); g, X. immutata (Hale 66633); h, X. isidiascens (McVaugh 4588, holotype in US); i, X. isidiigera (Harris 52, lectotype in G).
FIGURE 16—Isidia of Xanthoparmelia species with SEM: a, X. isidiosa (Hale 75722); b, X. joranadia (Nash 7897, isotype in US); c, X. kalbii (Xavier 754, holotype in US); d, X. keralensis (Hale 76562); e, X. khomasiana (Hale 80955, holotype in US); f, X. krogiae (Hildenbrandt 1962 p.p., lectotype in G); g, X. lavicola (Arvidsson 4532); h, X. maricopensis (Nash 8520); i, X. mbabanensis (Hale 79071, holotype in US).
Figure 17.—Isidia of Xanthoparmelia species with SEM: a, X. meruensis (Krog and Swinscow, holotype in O); b, X. mexicana (Nash 7602); c, X. minuta (Hale 72108, holotype in US); d, X. moctezumensis (Nash 11974); e, X. mougeotina (Hale 65266); f, X. nashii (Nash 20392, holotype in ASU); g, X. neocongensis (Hale 79288); h, X. neopropaguloides (Hale 76741); i, X. neolinctina (Hale 65223).
Figure 18.—Isidia of Xanthoparmelia species with SEM: a, X. neoweberi (Hale 76884); b, X. nonreagens (Elix 20550); c, X. norlypopsis (Hale 23106, holotype in US); d, X. oribensis (Hale 74041); e, X. phillipsiana (Filson 5904, holotype in MEL); f, X. piodmontensis (Hale 24016, holotype in US); g, X. plitii (Hale 14408); h, X. praegans (Hale 68838); i, X. pseudocongensis (Hale 78993, holotype in US).
Figure 19.—Isidia of Xanthoparmelia species with SEM: a, X. punctulata (Nash 23915, isotype of X. argentinensis in US); b, X. pustuliza (Hale 59964); c, X. remanens (Ellick 1522, holotype in MEL); d, X. saniensis (Hale 74031); e, X. scabrosa (Ellick 5497); f, X. schmidtii (Hale 56679); g, X. spargens (Hale 76093); h, X. streimannii (Hale 58511); i, X. subluminosa (Hale 58524, holotype in US).
Figure 20.—Isidia of Xanthoparmelia species with SEM: a, *X. subplitii* (Nee and Mori 3925); b, *X. subramigera* (Faurie 856, lectotype in BP); c, *X. subsoeredaas* (Arvidsson 919); d, *X. substenophylloides* (Hale 79148, holotype in US); e, *X. succedens* (Glaziou 3842, lectotype in M); f, *X. tenacea* (Walter 5107); g, *X. thamnoides* (Hale 65798); h, *X. thamnolica* (Hale 72034, holotype in US); i, *X. tinctina* (Kjellmert s.n.).
Figure 21.—Isidia of Xanthoparmelia species with SEM: a, X. treuensis (Hale 76315); b, X. umamvuna (Hale 76731, holotype in US); c, X. verdonii (Elix 11443); d, X. verrucigera (Aptroot 20591); e, X. vicaria (Cutliffe s.n., holotype in IIO); f, X. weberi (Weber 33663); g, X. xerophila (Elix 17752, holotype in CBG); h, X. xizangensis (Zong 218-1, holotype in HMAS); i, X. zonata (Ballingall 1764A, holotype in CBG).
PYCNIDIA

Pycnidia have been found in 233 of the 406 species of _Xanthoparmelia_. They appear to belong to the _Umbilicaria_-type (Vobis, 1980), although no ontogenetic studies have been made specifically for _Xanthoparmelia_. All are immersed in the thallus and 90–130 μm in diameter.

Conidia are extremely uniform in size, ranging from 5–14 μm long, the vast majority of the species (228) being 5–8 μm (Figure 23). The shape varies from weakly to strongly bifusiform, cylindrical with subapical bulges, or rod-shaped. Glück (1899) investigated _X. conspersa_ in Europe and found a great range of shapes in a single specimen. Several species, however, have unusually long cylindrical conidia: _X. mougeotina_, _X. xanthomelaena_, and _X. xanthomelanoides_ (all 7–9 μm long), _X. beatricea_ (9–12 μm), and _X. heterodoxa_ (11–14 μm). So far conidial shape and size have not played a role in the taxonomy of _Xanthoparmelia_.

Figure 22.—Distribution of maximum conidial length in micrometers for species of _Xanthoparmelia_.

Figure 23.—Distribution of maximum spore length in micrometers for species of _Xanthoparmelia_.

Table:

<table>
<thead>
<tr>
<th>Maximum Conidial Length (μm)</th>
<th>Number of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum Spore Length (μm)</th>
<th>Number of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
</tbody>
</table>

Chemistry

Early studies on the chemistry of Xanthoparmelia using microcrystal tests indicated a very limited range of lichen substances (Dahl, 1952; Krog, 1951). In fact, the main medullary components seemed to be only fumarprotocetraric, norstictic, salazinic, and stictic acids. This number has increased dramatically for two reasons. For a start, improved techniques for identification with thin layer chromatography (TLC) (C. Culberson, 1972a; C. Culberson and Johnson, 1976) and high performance liquid chromatography (HPLC) (C. Culberson, 1972b) have overcome the limits of sensitivity and accuracy imposed by the imperfect crystal tests. Secondly, analyses of many more specimens from previously poorly collected areas such as southwestern United States, Australia, and South Africa have revealed in full the true chemical diversity of the genus.

According to the most recent work, mostly by C.F. Culberson and J.A. Elix, there are at least 38 major metabolites (not counting usnic acid, rarely accompanied by atranorin in the cortex), defined here in a strictly taxonomic sense as diagnostic components at the species level (they usually occur with one or more minor metabolites):

- alectoronic acid
- anthraquinone pigment ("endomiltoides unknowns" in X. ianthina)
- barbatic acid
- colensoic acid
- conistictic acid
- constipatic acid
- 4-O-demethylidiffractaic acid
- 4-O-methylhypoprotocetraric acid (Kurokawa et al., 1971)
- diffractaic acid
- evernic acid
- exuvatic acid
- fatty unknown (in X. antroventralis)
- fatty unknown (in X. lipochlorochroa)
- fatty unknown (in X. nebulosa) (Elix, Johnston, and Armstrong, 1986)
- fatty unknown (in X. spargaris)
- fatty unknown (in X. subdecipiens) (Elix, Johnston, and Armstrong, 1986)
- fumarprotocetraric acid
- gyrophoric acid
- 3-O-hydroxybarbatic acid (C. Culberson, Nash, and Johnson, 1979)
- hypoprotocetraric acid
- hypostictic acid (Keogh, 1978)
- hypothammalic acid
- lecanoric acid
- lichesterinic acid
- lobaric acid
- microphyllinic acid
- norlobaridone (Gream and Riggs, 1960)
- norstictic acid
- notatic acid (Kurokawa et al., 1971)
- olivetoric acid
- protocetraric acid
- psoromic acid
- salazinic acid
- scabrosin derivatives (Begg, Elix, and Jones, 1978)
- stenosporonic acid (Elix, Jenie, and Parker, 1987)
- stictic acid
- succinprotocetraric acid
- thamnolic acid

There are in addition at least 53 secondary or minor metabolites, a few not yet identified structurally, which accompany the major metabolites:

- baeomycesic acid
- caperatic acid
- chalybaeizons unknown
- conechinocarpic acid
- conorlobaridone (Begg, Chester, and Elix, 1979)
- conorlobaridone (Begg, Chester, and Elix, 1979)
- conorostictic acid
- conprotocetraric acid
- consalazinic acid
- cryptostictic acid
- dehydroconstipatic acid
- diveronic acid (Elix, Jenie, and Parker, 1987)
- 4-O-demethylbarbatic acid
- 4-O-demethylmicrophyllinic acid
- 4-O-demethylnotic acid (C. Culberson and Hale, 1973) ("normotic acid")
- 2′-O-demethylpsoromic acid ("norpsoromic acid")
- echinocarpic acid
- endocrocin
- hyponotic acid
- hyposalazinic acid
- isonorlobaridone
- isonorlobariol
- isonotic acid
- lodoxin (Komiya and Kurokawa, 1970)
- lusitana unknown (in X. verrucigera)
- menegazziaic acid
- 2,4-di-O-methylglyrophoric/4,5-di-methylhiascic acid
- 4-O-methylhiascic acid
- 2-O-methylobutastic acid (Chester and Elix, 1979a)
- 4-O-methylichamisic acid
- norcolensoic acid
- norlobarilol
- norlobaril methyl ester
- obtusatic acid
- oxyksyrin
- pertusaric acid
- physodalic acid
- physodic acid
- protocoronic acid
- pseudostictic acid
- scabrosin 4,4′-diacetate (Begg, Elix, and Jones, 1978)
- scabrosin 4-acetate-4′-butyrate (Begg, Elix, and Jones, 1978)
- scabrosin 4,4′-diacetyl (Begg, Elix, and Jones, 1978)
- scabrosin 4-acetate-4′-hexanoate (Begg, Elix, and Jones, 1978)
- scabrosin unknown Rg, 12 (in X. amplexuloides)
- schenckiana unknown (pigment)
- skyrin
- skyrinol
- squamatic acid
- subnotatic acid (Elix and Lajide, 1984)
- umbilicatic acid
- ursolic acid
- virensic acid
- zeorin

This number is still growing as new analyses are made and new structures determined. Details on the structure and classification of these substances can be found in Elix, Whitton, and Sargent (1984) and Elix, Johnston, and Armstrong (1986). One may predict that the genus will be found to produce well
over 100 different substances.

My first chemical tests in the 1950s were done with Ashina's microcrystal tests, which I had learned from the Cladonia specialist Dr. A.W. Evans. Over the years I progressed from primitive paper chromatography to silica gel TLC as the new techniques became available. For the purposes of this synopsis I have determined the chemistry of all species with TLC, using at least 2 or more solvent systems in common use (C. Culberson, 1969; Culberson, Culberson, and Johnson, 1981). Fumarprotocetraric, protocetraric, and succinprotocetraric acids were usually confirmed in n-butanol-acetone.

In the main species list the chemistry given for each species is an amalgam of my own tests, those done for me by other workers, and unpublished notes taken from specimens annotated for chemistry, most by Culberson or Elix. It can be assumed that the chemistry listed holds for type specimens unless stated otherwise. A number of type species are so fragmentary that their full chemistry cannot be investigated with modern techniques without destroying the specimens. In truth, no analysis can ever be considered final and definitive.

A complete list of the occurrence of the major lichen substances by species follows. Minor metabolites are not listed here but may be determined from entries under "Chemistry" in the main synoptic list. If two major metabolites occur together (as protocetraric acid and 4-O-demethylidiffractaic acid in X. duplicata), one is selected as the major metabolite (perhaps arbitrarily!) and the other one listed in parentheses. Pigments are listed separately.

alcteronic acid: X. alectoronica.

anthraquinone (in X. endomutiloides series): X. ianithina.

colcensic acid: X. ballingalliana, X. colensoica (stensporocenic acid).

constictic acid: X. gerhardii.

constipic acid (usually accompanied by protoconstipatic and dehydroconstipatic acids): X. condaminensis (scabrosin derivatives), X. globulisera, X. nigroalesoa, X. oleosa, X. uitiulata.

4-O-demethylidiffractaic acid: X. duplicata (protocetraric acid), X. neotumidosa (protocetraric acid), X. ochropuscura.

4-O-methylprotocetraric: X. calvina, X. comarita.

diffractaic acid (often accompanied by traces of barbitic acid, 4-O-demethylbarbitic acid, and squamatic acid): X. ajonensis, X. blackdownensis, X. conjuncta, X. diffractica (salazinic acid), X. everardiensis, X. lestoehoensia (salazinic acid), X. luderitians, X. manuennsis, X. nana (salazinic acid), X. nashii, X. rugulosa, X. tucnensic.

exochinacpic acid: X. puitsa (gyrophoric acid).

exuviiatic acid: X. exuvitata, X. spargenosa.

gyrophoric acid: X. endochromatica, X. gyrophorica, X. leucostigma, X. olivetorica.

3-α-Hydroxybarbatic acid: X. moccetumunensis.

hypothamonic acid: X. thamnolica.

lichesteric acid: X. montanensis.

lorbic acid: X. nzotana.

microphyllinic acid: X. cerasensis.

notatic acid: X. notata.

olivetic acid: X. heterodosa.

steroseporic acid (often accompanied by colerasic acid): X. keralensis, X. nautzkewitschica (hystopptic acid), X. peruviensis, X. schebaensis, X. stenosorphone, X. isekensis (salazinic acid).

succinproctecetric acid: X. krogiae.

thannolic acid (often with quamic acid): X. cedrus-montana.

unknown fatty acid: X. atroveneta.

unknown fatty acid: X. nebulosa, X. spargens.

unknown fatty acid: X. lipocloroachora.

In terms of sheer frequency, salazinic acid remains the most characteristic lichen substance in Xanthoparmelia. Some 138 species contain this easily identified, K+ red acid as a major (92) or minor (46) metabolite. The next most common, closely related stictic acid, occurs as a major component in 60 species.

Beyond salazinic and stictic acids, the remaining ones are not only less frequent but often occur in species with more restricted distributions. Norlobaridine (in 27 species) is almost exclusively centered in Australia. Fumarprotoceric acid (in 29 species) is most common in North America and South Africa but is also produced by the Eurasiatic species X. protomartae, pan-subtropical X. subramignera, and several Australian species. Norsticic acid as a major component (43 species) has wide occurrence but is especially common in Australia. Hypoprotoceric acid (21 species) is most common in South Africa with a few occurrences in the southwestern USA and in Australia, and protoceric acid occurs in 18 species, all but three endemic to southern Africa. Psoromic acid (9 species) is absent from Australasia but occurs in the New World and several common species in South Africa. Constipic acid occurs in 5 Australasian species, but comparable species in South Africa and the New World have evolved with a more complex series of compounds related to constipic acid.

PIGMENTS

Pigments occur in 47 species. The most frequent one, the orange-red bisanthraquinone skyrin in 28 species, is deposited in a continuous to patchy layer near the lower medulla. It is by far the most common in South Africa (21 species). The dull rusty reddish schenckiana unknown, also produced in the lower medulla and known only in South Africa, forms a brilliantly longwave UV+ yellow fluorescent spot and a lower streak probably representing secalonic acid derivatives.

The anthraquinone pigments, a group of at least four major compounds fully represented only in X. endomolitoides, are still mostly undetermined and confined to South Africa. They form a discrete series of reddish to purple spots on TLC plates. A pale yellowish pigment streak tentatively identified as a secalonic acid compound has been found in X. krogiae and X. mutabilis and in schenckiana pigment-containing species.

dendrocric: X. ochropulchra.

oxyskyrin: X. enteromamatha.

secalonic acid group: X. endochromatica, X. krogiae, X. mutabilis, X. verecunda.

skyrinol: X. enteromamatha.

CHEMISTRY AS A SPECIES CHARACTER

Every lichen taxonomist is aware that most lichens produce unique secondary metabolites, often called lichen acids or lichen substances. Some of these are pigments, such as usnic acid, but the majority are colorless and identifiable only with microchemical tests. There is no longer any argument over the biological uniqueness of these substances, only their use as taxonomic characters.

William Nylander, the “father” of lichen chemotaxonomy, applied rather few color tests to Xanthoparmelia (Nylander, 1869a) and created no “chemical species.” Vainio (1900) made careful color tests of the species he studied. Lettau (1914)
wrote a long, sympathetic discussion on the use of chemistry in lichen taxonomy, utilizing crude microcrystal tests for salazinic acid. Kušan (1932) categorized three groups of taxonomists, one which rejected the use of lichen chemistry, one which recognized the importance of chemistry but not as a taxonomic character, and one which enthusiastically used chemistry as a species character (e.g., Zoř, 1903). Gyelnik was included in the latter group since from the first he made deliberate use of chemical color tests as species characters. For example he recognized Parmelia prominulata as follows: "a P. conspersa differt medulla K+ primum nulla." We know now that X. prominulata contains K- fumarprotocetraric acid and that P. conspersa (= X. angustiphylla in Gyelnik's sense) has K+ yellow stictic acid. Many of Gyelnik's species were based on KOH reactions and medullary color.

In 1964 I described Parmelia dierythra as a chemotype of P. plittii. Since then most workers in Xanthoparmelia have used chemistry as a species character. For example, Krog (1978) concluded that in the absence of a variety of morphological characters "chemical constituents have...proved to be of greater taxonomic value in [Xanthoparmelias] than in many other lichen groups." Elix (1982), Elix and Johnston (1987), and Elix, Johnston, and Armstrong (1986) make detailed references to biogenetic pathways and correlations with geographic distribution to support chemical species in the Australian flora.

The kinds and patterns of chemical variation in lichens have been discussed by many authors (Cuberson, 1969; Hale, 1983; Elix, 1982; Hawksworth, 1976) and need no further elaboration here. Xanthoparmelia has a wide range of variation but generally follows replacement patterns. A good example of this is the X. mexicana group in North America. The 9 chemotypes share a common morphology: Thallus isidiate with cylindrical isidia, adnate to loosely attached, and pale brown below. If geography is ignored, the species cannot be identified without TLC tests. These species, with their major metabolites, are:

<table>
<thead>
<tr>
<th>Species</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. ajoensis</td>
<td>diffractaic acid</td>
</tr>
<tr>
<td>X. dierythra</td>
<td>norstictic acid</td>
</tr>
<tr>
<td>X. joranadlia</td>
<td>lecanoric acid</td>
</tr>
<tr>
<td>X. maricopoulos</td>
<td>norstictic and hyposalazinic acids</td>
</tr>
<tr>
<td>X. mexicana</td>
<td>salazinic acid</td>
</tr>
<tr>
<td>X. moctezumensis</td>
<td>3-ε-hydroxybarbaric acid</td>
</tr>
<tr>
<td>X. plittii</td>
<td>stictic acid</td>
</tr>
<tr>
<td>X. schmidtii</td>
<td>barbaric, norstictic, and salazinic acids</td>
</tr>
<tr>
<td>X. subramigera</td>
<td>fumarprotocetraric acid</td>
</tr>
<tr>
<td>X. weberi</td>
<td>hypoprotocetraric acid</td>
</tr>
</tbody>
</table>

The North American distributions of these species are now rather well known. The three most common ones are roughly allopatric: X. plittii is the main species in northeastern USA—Great Lakes region, X. subramigera extends from New Jersey to Texas in the Piedmont (south of the maximum extent of Wisconsin glaciation) and in the western states, and X. mexicana is strictly western (Hale, 1964). They fall in well-defined phytogeographic patterns with sharp separation at convergence points (Hale, 1956). Rare X. dierythra was described from Minnesota and occurs sporadically in neighboring states. The remaining species are confined mostly to arid southwestern USA and Mexico.

In Australia a good example of a replacement series is X. amphixantha (stictic acid), X. pseudoamphixantha (norstictic acid), and X. reptans (fumarprotocetraric acid).

Other examples can be found in the discussions of X. conspersa, X. dichotoma, X. exilima, X. hypoleia, X. lineola, X. somloensis, X. tasmanica, and X. wortcsteri.

The addition pattern is represented by X. brevilobata (hypostictic acid) and X. naudesnctata (hypostictic and stenosporonic acids), X. dierythra (norstictic acid) and X. maricopoulos (norstictic and hyposalazinic acids), X. schenckiana (protocetraric acid) and X. diacida (protocetraric and psoromic acids), X. subramigera (fumarprotocetraric acid) and X. natalensis (fumarprotocetraric and diffractaic acids), and X. tundiosa (protocetraric acid) and X. neotumidosa (protocetraric and 4-O-demethyldiffractaic acids).

Chemosyndrome is a rare chemical pattern in Xanthoparmelia, found mostly in species containing the barbaric—diffractaic acid or colensoic—stenosporonic acid series. The best studied example is X. ajoensis—X. moctezumensis (C. Cuberson, Nash, and Johnson, 1979) in southwestern USA and Mexico. Another is X. colensoic—X. shebaenensis in South Africa.

It is difficult to estimate how many of the 406 species in Xanthoparmelia can be considered to be "chemical species." About 60 species (13 "parents" and 47 chemotypes) are involved in the patterns described above. This total could be increased but some of the pairs would be contrived since subtle morphological and chemical differences will often be found on closer study. Ever more refined studies of morphology often show that presumed chemical species differ in previously undetected morphological characters or in ecology and distribution. Nash and Zavada (1977) conducted an intensive survey of the X. mexicana chemotypes in Arizona and discovered statistically significant correlations between species distribution and type of rock substrate. Adding other data on lobe width and adnation, they concluded that the chemotypes should be recognized as species. A comparatively thorough study of other presumed chemotypes in Xanthoparmelia will require herbarium and field studies on a large scale, as well as a better understanding of morphological characters.

Phytogeography

The geographical distributions of Xanthoparmelia species were poorly known as recently as 15 years ago, when I listed 94 species at the world level (Hale, 1974b). We had fairly extensive collections from eastern North America and Europe, but relatively little from Australia, southwestern USA, and...
South Africa. Since then almost 300 species have been described from these areas, and the results have profoundly altered our views on the geography and evolution of the genus. I had, for example, presumed South Africa to be the major center of speciation and while this has proved to be correct, Australia has emerged to be not far behind (Elix, Johnston, and Armstrong, 1986).

In truth, any statements we make on lichen phytogeography are bound to be modified, sometimes embarrassingly so, as new collections are made, and the ranges of many species are extended. As is so often the case, the richness of a lichen flora in most regions is usually a reflection of collecting intensity. I believe, however, that major collecting efforts have been made and most continents are relatively well known.

The 406 species of Xanthoparmelia are widely distributed in boreal, temperate, and subtropical regions. As a general rule, however, the species are photophilic and most abundant in semi-arid to arid regions with extensive exposures of granite and sandstone, such as Australia, southern Africa, and southwestern USA. Rainfall, usually in the range of 100 to 500 mm annually, limits the development of forests in these semi-arid regions, and open xerophytic shrub communities dominate (Rogers, 1977). On the other hand, few Xanthoparmelia species can survive where there is less than 50 mm a year, except along coastlines where there is significant moisture input from fog and mist, as the Namib coast (Bödel and Wessels, 1986).

Heavily forested Europe, eastern North America, and parts of Asia have rainfall in excess of 1000 mm a year, fewer exposed habitats, and a poor Xanthoparmelia flora. At the same time, South America has a relatively poor flora for its size, although it is the center of speciation for the few sorediate species. The poorest areas are the humid lowland tropics, where few species have been collected. Antarctica and the high arctic have no Xanthoparmeliae, although X. somloensis extends northward into Alaska. The genus is replaced by Arctoparmelia in arctic regions.

A few places in the world have unusually high numbers of endemic species. For example, the high frosty dolerite highlands of Lesotho in southern Africa have a total flora of 20 species, of which 11 are endemic and most with unusual chemistries: X. brevlobata, X. conjuncta, X. diffractaica, X. granulata, X. gyrophorica, X. koisephaloa, X. mapholanengensis, X. microlobula, X. naudeakensia, X. pusoa, and X. tsekensis.

The foggy Namib coast has a total flora of 8 species (X. equalis, X. evernica, X. harrisi, X. lagunebergenesis, X. luderitziana, X. norwalteri, X. serasiuxxii, and X. walteri), all (except X. evernica) endemic there. This uniqueness (and the absence of other species of Xanthoparmelia) may be correlated with their salt tolerance.

The small knersvlake region north of Vanrhynsdorp in southern Namaqualand is covered with a quartzite pavement. It has 6 highly endemic species in a flora of 20 species: X. aggregata, X. beatricea, X. duplicata, X. epigaea, X. hyperhyta, and X. pachylyda. It is perhaps no coincidence that these are all terricolous species.

Finally, to continue with examples from southern Africa, one cannot fail to be impressed by the Table Mountain lichen flora. This small area receives frequent fog on strong prevailing southwest winds. Twelve of the 50 species here are endemic: X. almbornii, X. conspersula, X. consiricfants, X. cuntrata, X. endochromatica, X. enterodoxantha, X. eradicata, X. olifantensis, X. olivetorica, X. surrugata, X. tablenis, and X. tenulobalata.

Australia does not have the sharp climatic differences seen in southern Africa. The Murray mallee shrub area in Victoria and South Australia, however, has been the center of evolution for a number of terricolous species: X. aurifer, X. bellatula, X. convoluta, X. eillfi, X. pumila, X. pseudoamphiantha, and X. terrestris.

The Sonoran desert in southwestern USA/Mexico has several endemic, chemically unusual species: X. ajoensis, X. dissensa, X. hyperhyta, X. huachucensis, X. joranadica, X. moctezumensis, X. nigroporomifera, X. psoromifera, and X. tucsonensis.

The total number of species for the major continental areas are as follows:

<table>
<thead>
<tr>
<th>Region</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>50</td>
</tr>
<tr>
<td>South America</td>
<td>41</td>
</tr>
<tr>
<td>Europe</td>
<td>14</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>212</td>
</tr>
<tr>
<td>Australia</td>
<td>145</td>
</tr>
<tr>
<td>Asia</td>
<td>13</td>
</tr>
</tbody>
</table>

The following lists of species distribution by country are based on specimens I have actually seen in the herbaria listed in the “Acknowledgments.” Literature reports are not included unless I have checked them.

NORTH AMERICA

MEXICO AND CENTRAL AMERICA

- **Costa Rica**: X. conspersa, X. suramigera.
- **Guatemala**: X. conspersa, X. neopropaguloides, X. pitiitii.

Panama: X. conspersa, X. neopelagoides.

WEST INDIES

Cuba: X. neopelagoides, X. plitii, X. subramigera.
Dominica: X. subramigera.
Jamaica: X. subramigera.
St. Barthelemy: X. subramigera.

SOUTH AMERICA

Paraguay: X. plitii, X. sublitii.
Tristan de Cunha: X. microspora.

EUROPE

Austria: X. conspersa, X. somoensis.
Bulgaria: X. somoensis, X. tinctima.
Finland: X. conspersa, X. mueggeiti, X. somoensis.
Poland: X. conspersa, X. mueggeiti.
Portugal: X. sublaevi, X. tinctima, X. vurcutigera.

Turkey: X. conspersa, X. somoensis.

AFRICA

Algeria: X. tinctima.
Angola: X. plitii, X. subramigera.
Bourbon: X. phaseophana.
Ethiopia: X. australis, X. meruensis.
Gough Island: X. microspora.
Ivory Coast: X. neopelagoides.

St. Helena: X. wildegae.

Sudan: X. subramigera.

Australasia

Asia

Korea: X. coreana, X. mexicana, X. somloensis.

Mongolia: X. camtschadalisis, X. desertorum, X. somloensis.

Nepal: X. mexicana.

Pakistan: X. somloensis, X. tincina.

Delimitation of Xanthoparmelia

The name Xanthoparmelia was first proposed by Vainio (1890) in his classic study of the Brazilian lichens. He conceived it as a group within Parmelia (section Xanthoparmelia) of narrow lobed, yellow species, including both saxicolous and corticolous ones. Taking the European species, Krog (1951) recognized that “Xanthoparmelia [sic] constitutes both chemically and morphologically a well circumscribed group.” Hale and Kurokawa (1964) later showed that the group so delimited on the world level is heterogeneous, since the corticolous species such as Parmelia abstrusa Vainio (= Relicina abstrusa (Vainio) Hale) and P. sinuosa Smith (= Hypotrachyna sinuosa (Smith) Hale) are distinct by reason of rhizines, cilia, and other characters and belong in other genera.

After these discordant elements were removed, Parmelia subgenus Xanthoparmelia (Vainio) Hale and Kurokawa, or as it is now known at the generic level, Xanthoparmelia (Vainio) Hale, was still a somewhat heterogeneous group of species characterized as obligately saxicolous or terricolous, with usnic acid, a pored epicortex (Hale, 1973), simple rhizines, no cilia and small adnate apothecia with very uniform spores 6-13 μm long. The conidia are basically bifusiform, 5-8 μm long.

Since then several other small discordant elements have been recognized in the genus. The most conspicuously anomalous one, X. centrifuga (L.) Hale and its relatives (X. incerta (Persoon) Hale, X. separata (T. Fries) Hale and X. subcentrifuga (Oxner) Hale), has recently been removed to a new genus, Arctoparmelia Hale (Hale, 1986a). The species group centered around “Omphalodium hottentottum (Acharius) Flo tow” has also been assigned to another genus, Xanthomaculina Hale (Hale, 1985b). A related vaulted-corticate, pseudocyphellate species, X. exornata (Zahlbruckner) Knox
and Brusse, has been recognized as the monotypic genus *Namakwa* Hale (Hale, 1988a). A small group of erizinicate, lichenin-negative species, *X. distincta* and *P. arzihinosa*, constitute the genus *Psiloparmelia* Hale (Hale, 1989b). Finally, a primarily South African group of 16 subcrustose species related to *X. adhaerens* is now recognized as a distinct genus, *Karloowia* Hale (Hale, 1989c). With these five small groups removed, *Xanthoparmelia* now appears to be reasonably homogeneous.

The closest relative among the parmeliaoid genera is *Paraparmelia* Elix and Johnston, a saxicolous group almost exclusively occurring in the South Hemisphere (Elix, Johnston, and Verdun, 1986). It lacks usnic acid and has a different chemical profile with a preponderance of scabrobin derivatives and norlorbanidone. Both *Paraparmelia* and *Xanthoparmelia* have speciated most richly in semi-arid regions where their close morphological similarity may have derived from convergent evolution.

Neofuscelia Esslinger (Esslinger, 1978) is another epicorticate group which has very similar morphological development and is also highly developed in semi-arid regions. The generic relationships of *Neofuscelia* to both atranorin-containing *Paraparmelia* and usnic acid-containing *Xanthoparmelia* will have to be examined by lichenologists in the future when other characters used to separate them, including apothecial ontogeny, iodine tests for polysaccharide macromolecules (lichenin being present in these three genera), oil bodies in rhizines, etc., are better known.

Subgeneric Classification

Gyelnik (1931b, 1932a) recognized three subsections under section *Xanthoparmelia*: subsection *Endooleucae* Vainio (= subsection *Xanthoparmelia*), subsection *Endocoerulea* Gyelnik (type species *Parmelia bouly de lesdainii* Gyelnik (= *Psiloparmelia distincta* (Nylander) Hale), and subsection *Endoxanthae* Vainio (type species *Parmelia sphaerospora* Nylander) (= *Psuedoparmelia sphaerospora* (Nylander) Hale, 1986c:603)). He later emended subsection *Endocoerulea* to read “Thallus subitus nudus rhizinosus,” one of the diagnostic characters for *Psiloparmelia distincta*.

Aside from the fact that two of the three subsections are not now considered to belong in *Xanthoparmelia* at all, the unworkability of a subgeneric classification is attested by the fact that Gyelnik himself never tried to apply this in practice except in some numbers of *Lichenotheca Parva*.

This huge sprawling genus cannot be divided into formal nomenclatural units. At best we can recognize a few groups of obviously very closely related species, leaving the great majority of species simply as undefined *Xanthoparmeliae*. The more obvious of these groups, which will be discussed in more detail in the synoptic list, center around *X. amphixantha*, *X. conspersa*, *X. convoluta*, *X. dichotoma*, *X. hypoleia*, *X. mexicana*, *X. microspora*, *X. mougeotina*, and *X. schenckiana*.

Xanthoparmelia

Description.—Thallus foliose, very tightly to loosely adnate, saxicolous or free growing on soil, 1–20 cm broad, yellowish green; lobes subirregular to sublinear or linear, 0.1–10 mm wide, plane or convoluted, irregularly to dichotomously branched, the margins sometimes black-rimmed, separate to imbricate; upper surface continuous and emaculate, white-maculate, or effigurate-maculate, smooth to transversely cracked and rugose with age; medulla white or partly or wholly pigmented; lower surface plane or canalicate, pale brown to black, sparsely to densely rhizinate, rarely erizinate, the rhizines simple to sparingly branched, 0.1–2 mm long. Pyenia immersed; conidia bifusiform, 4–8 µm long, rarely cylindrical, 5–14 µm long. Apothecia adnate to subciliate, 1–20 mm in diameter, the disc usually plane, imperforate, brown; spores simple, ellipsoid, colorless, 8/ascus, 4–8 × 6–13 µm.

The typification of the genus with *Parmelia conspersa* follows Vainio’s intent, *P. conspersa* being listed as the first species in his treatment. Clements and Shear (1931) later used *P. conspersa* to typify the genus *Parmelia Ach. in their comprehensive tabulation of lichen and fungal genera, a list which I consider to be neither authoritative or final. Indeed the rules which they devised to typify fungal genera would be totally unacceptable today.

Dodge (Dodge and Baker, 1938:589) also tried to typify *Parmelia*, first removing section *Xanthoparmelia* Vainio (typified by *P. conspersa*) and then recommending a name in the *P. saxatilis* group for *Parmelia*. Ahlner (1954) formally conserved *Parmelia against Lichen* L., with the type species *P. saxatilis*, and this treatment is followed in *Index Nominum Genericorum* (Farr, Leussink, and Sulfeu, 1979:1266) and in my world-level revision of *Parmelia* (Hale, 1987c). At this point I feel that both *Parmelia* and *Xanthoparmelia* are adequately typified under the present rules of nomenclature.

In the main synoptic list which follows, I have enclosed in brackets any pertinent information on the type specimen labels which was not cited in the original description. As in my previous revisions of the Parmeliaceae, I do not holotypify any names published before 1958, when the Code made designation of holotypes mandatory. Lectotypes are selected for pre-1958 names even when it appears that a particular author saw only one specimen in his collection when describing the taxon.

Data on distribution of the species are based on the approximately 8000 collections in the US and secondarily on
my own identifications of specimens deposited in the various herbaria listed above under Acknowledgments. Unverified literature reports are not used. Elix, Johnston, and Armstrong (1986) should be consulted for greater detail on the Australian species.

Keys to the Species of Xanthoparmelia

The following keys to the 406 species of *Xanthoparmelia* are divided into six major groups:
1. Key to Sorediate Species
2. Key to Terricolous Species
3. Key to Isidiate Species with a Brown Lower Surface
4. Key to Isidiate Species with a Black Lower Surface
5. Key to Nonisidiate, Nonsorediate Species with a Pale Lower Surface
6. Key to Nonisidiate, Nonsorediate Species with a Black Lower Surface

Terricolous lichens include both obligately, usually free-growing terricolous species (e.g., *X. camtschadalis* and *X. convoluta*), a few such as *X. barbellata* and *X. phaeophana*, which normally grow on rocks but are occasionally found on soil, and a sizeable group which grows loosely attached on soil and pebbles. Some species in the latter group are keyed in both the terricolous and saxicolous keys. Isidiate terricolous species such as *X. adleri, X. constipata, and X. villamiliana* are keyed out in the isidiate species keys.

Medullary color tests are useful for preliminary study, but the chemistry of most species must eventually be determined with TLC to arrive at an accurate identification. Chemical characters used in the keys refer to the major metabolite (or co-occurring major metabolite) only, unless stated otherwise in a couplet.

The nature of the upper surface, whether maculate or emaculate, should be determined under 10-20× magnification. Color of the lower surface is also an extremely important character seen best under magnification. Lobe width should be determined with a millimeter ruler as accurately as possible.

1. Key to Sorediate Species

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Key to Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thallus free growing on soil</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Thallus very tightly adnate to adnate on rocks</td>
<td>4</td>
</tr>
<tr>
<td>2(1).</td>
<td>Lobes strongly convoluted</td>
<td>X. erosa</td>
</tr>
<tr>
<td></td>
<td>Lobes canaliculate below, not convoluted</td>
<td>3</td>
</tr>
<tr>
<td>3(2).</td>
<td>Medulla K+ yellow (stictic acid)</td>
<td>X. aurifera</td>
</tr>
<tr>
<td></td>
<td>Medulla K- (fumarprotocetraric acid)</td>
<td>X. concomitans</td>
</tr>
<tr>
<td>4(1).</td>
<td>Lower surface black</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Lower surface pale brown to brown</td>
<td>8</td>
</tr>
<tr>
<td>5(4).</td>
<td>Thallus very tightly adnate with an areolate center; lobes 0.2-0.5 mm wide</td>
<td>X. mougeotii</td>
</tr>
<tr>
<td></td>
<td>Thallus tightly to loosely adnate; lobes 0.5-4 mm wide</td>
<td>6</td>
</tr>
<tr>
<td>6(5).</td>
<td>Salazinic acid present; soredia powdery; South America</td>
<td>X. microspora</td>
</tr>
<tr>
<td></td>
<td>Stictic acid present</td>
<td>7</td>
</tr>
<tr>
<td>7(6).</td>
<td>Soredia coarse, arising from pustular isidia; South Africa</td>
<td>X. pustulifera</td>
</tr>
<tr>
<td></td>
<td>Soredia powdery in capitate soralia; South America</td>
<td>X. submougeotii</td>
</tr>
<tr>
<td>8(4).</td>
<td>Medulla K- (fumarprotocetraric or psoromic acids or norlobaridone)</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Medulla K+ yellow or yellow turning red (salazinic or stictic acids); South America</td>
<td>11</td>
</tr>
<tr>
<td>9(8).</td>
<td>Medulla P- (norlobaridone); soredia powdery; Australia</td>
<td>X. xanthosorediata</td>
</tr>
<tr>
<td></td>
<td>Medulla P+ yellow or red (fumarprotocetraric or psoromic acids)</td>
<td>10</td>
</tr>
<tr>
<td>10(9).</td>
<td>Medulla P+ red (fumarprotocetraric acid); soredia coarse, arising from pustular isidia; Lesotho</td>
<td>X. granulata</td>
</tr>
<tr>
<td></td>
<td>Medulla P+ yellow (psoromic acid); soredia farinose in capitate soralia; South America</td>
<td>X. ferraroiana</td>
</tr>
<tr>
<td>11(8).</td>
<td>Stictic acid present</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Salazinic acid present</td>
<td>13</td>
</tr>
<tr>
<td>12(11).</td>
<td>Soredia capitate, farinose; South America</td>
<td>X. farinosa</td>
</tr>
<tr>
<td></td>
<td>Pustulate-sorediate, the soredia coarse; southern Africa</td>
<td>X. pustulosorediata</td>
</tr>
</tbody>
</table>
2. Key to Terricolous Species

1. Thallus free growing, often breaking apart into separate lobes or remaining intact; lobes moderately to strongly convoluted, sometimes forming tubes
 Thallus forming intact, usually orbicular colonies or rosettes loosely attached on pebbles or compacted soil, in part becoming free-growing; lobes plane below, canaliculate (with a raised yellowish rim below), or weakly convoluted

2(1). Medulla K- (evernic, fatty, fumarprotocetraric, hypoprotocetraric, or protocetraric acids, or norlobaridone) Medulla K+ yellow or yellow turning red (hypostictic, norstictic, salazinic, or stictic acids) Medulla P+ orange-red (fumarprotocetraric or protocetraric acids); South Africa
 Medulla P- 5

4(3). Lobes strongly convoluted in tubes; surface emaculate; protocetraric acid present Lobes weakly convoluted; surface weakly white-maculate; fumarprotocetraric acid present
 Norlobaridone present; Australia

5(3). Fatty acid or hypoprotocetraric acid present; USA or South Africa

6(5). Lobes coarse and broad, 2–5 mm wide X. australiensis
 Lobes narrower, 0.8–1.2 mm wide X. subdistorta

7(5). Hypoprotocetraric acid present Fatty acids present
 Lower medulla orange-red (skyrin); lobes weakly convoluted, open below X. neocongruens
 Lower medulla white; lobes strongly convoluted as tubes X. pachyclada

9(7). Thallus forming intact colonies; lobes weakly convoluted; South Africa
 Thallus breaking apart into strongly convoluted tubes; USA X. epigaea

10(2). Salazinic acid present Hypostictic, norstictic, or stictic acids present

11(10). Surface white-maculate Surface emaculate

12(11). Thallus forming more or less intact colonies; lobes narrow, 1.3–3 mm wide; Eurasia and North America X. camtschadalis
 Thallus breaking part into separate lobes; USA, 2–10 mm wide X. desertorum
 Lobes plane to weakly convoluted, 1.5–7 mm wide, not rugose X. subdiffluens

14(13). Lobes strap-shaped, moderately rhizinate below; Europe X. subdiffluens
 Lobes weakly convoluted, contorted and twisted, very sparsely rhizinate below; western North America X. idahoensis
15(11). Thallus free-growing on soil and humus, often scattered; lobes strongly convoluted .. 16
Thallus mostly loosely attached on soil or pebbles, remaining intact; lobes weakly convoluted 18

16(15). Lobes mostly separate, strongly inrolled; rhizines sparse; Australia .. X. convoluta
Thallus scattered but lobes mostly intact, moderately to strongly convoluted; rhizines moderate to dense 17

17(16). Lower surface pale to dark brown with moderate to dense rhizines; North America .. X. chlorochroa
Lower surface dark brown with dense, long dark rhizines; Lesotho .. X. kotisephola

18(15). Thallus forming compact rosettes; lobes rather short, to 3 mm wide; rhizines moderate to dense, light brown to brown; western North America X. wyomingica
Thallus expanded; lobes elongate less than 2 mm wide; rhizines dense, dark brown; South Africa X. subconvoluta

19(10). Nostratic acid present .. 20
Stictic or hypostictic acid present .. 23

20(19). Lower surface dark brown to nearly black; rhizines lacking; North America .. X. norchlorochroa
Lower surface pale brown to brown; rhizines present .. 21

21(20). Upper surface white-maculate; USSR X. kasachstania
Upper surface emaculate .. 22

22(21). Lobes strongly inrolled, coarse, 3–8 mm wide; Australia X. norconvoluta
Lobes moderately inrolled, finer, 1–2 mm wide; North America .. X. neochlorochroa

23(19). Hypostictic acid present; Australia X. sulcifera
Stictic acid present; Americas .. 24

24(23). Lobes more or less strongly inrolled, breaking apart X. vagans
Lobes weakly convoluted; thallus intact, terete-laciniate at the center .. X. neowymingica

25(1). Lobes canalicate; lower surface pale yellow to brown (blackening only in X. salamphixantha) with sparse long brown to black rhizines .. 26
Lobes plane, flattened to weakly convoluted; lower surface pale brown to black with sparse to moderate concolorous rhizines .. 40

26(25). Upper surface white-maculate .. 27
Upper surface continuous, emaculate .. 33

27(26). Medulla K– (fumarprotocetraric or stenosporonic acids) .. 28
Medulla K+ yellow or yellow turning red (nostriptic, salazinic, or stictic acids) .. 31

28(27). Medulla P– (stenosporonic acid); South America X. peruvienis
Medulla P+ orange-red (fumarprotocetraric acid) .. 29

29(28). Lobes with terete laciniae at the center; South Africa X. neoreptans
Terete laciniae lacking; Australia .. 30

30(29). Thallus forming rosettes; lobes dichotomously branched, moderately branched; rhizines moderate to dense X. reptans
Thallus breaking apart; lobes more irregularly branched; rhizines very sparse .. X. willisi

31(27). Nostratic acid present; Australia X. pseudoamphixantha
Salazinic acid or stictic acid present .. 32

32(31). Stictic acid present; Australasia X. amphixantha
Salazinic acid present; South Africa X. salamphixantha

33(26). Medulla K– (evernic acid); South Africa X. aggregata
Medulla K+ yellow or yellow turning red (salazinic or stictic acids) .. 34
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>34(33).</td>
<td>Stictic acid present</td>
<td>X. benyovszkyana</td>
</tr>
<tr>
<td>35(34).</td>
<td>Salazinic acid present</td>
<td>X. molluiscula</td>
</tr>
<tr>
<td>36(35).</td>
<td>Lobes becoming terete, narrow, 0.2-0.6 mm wide; Madagascar</td>
<td>X. subflabellata</td>
</tr>
<tr>
<td>37(36).</td>
<td>Main lobes flattened, only the secondary laciniae terete, 1-2 mm wide</td>
<td>X. alternata</td>
</tr>
<tr>
<td>38(34).</td>
<td>Center of thallus becoming densely terete-laciniate</td>
<td>X. amphixanthodes</td>
</tr>
<tr>
<td>39(38).</td>
<td>Terete laciniae lacking</td>
<td>X. amphiixanthoides</td>
</tr>
<tr>
<td>40(25).</td>
<td>Surface emaculate; lower surface mostly dark brown; South Africa and Madagascar</td>
<td>X. bellatula</td>
</tr>
<tr>
<td>41(40).</td>
<td>Surface usually white-maculate; lower surface pale yellowish brown or darker; Australia</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>42(41).</td>
<td>Salazinic acid present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>43(42).</td>
<td>Fatty acids present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>44(43).</td>
<td>Thallus black below</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>45(44).</td>
<td>Medulla K- (4-O-demethyldiffractaic, fatty, fumarprotocetraric, hypoprotoce-traric, protocetraric, or stenosporonic acids or norlobaridone)</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>46(45).</td>
<td>Medulla K+ yellow or yellow turning red (hypostictic, norstictic, salazinic, or stictic acids)</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>47(46).</td>
<td>Secondary laciniae weakly convoluted; lower surface pale yellowish brown</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>48(47).</td>
<td>Secondary laciniae terete; lower surface brown</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>49(48).</td>
<td>Thallus pale brown to brown below</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>50(49).</td>
<td>Thallus orange-red (fumarprotocetraric or protocetraric acids); South Africa</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>51(50).</td>
<td>Medulla P+ orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>52(51).</td>
<td>Medulla P-</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>53(52).</td>
<td>4-O-Methylidiffractaic acid present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>54(53).</td>
<td>4-O-Methylidiffractaic acid lacking</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>55(54).</td>
<td>Surface emaculate</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>56(55).</td>
<td>Surface white-maculate</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>57(56).</td>
<td>Lobes moderately convoluted, to 4 mm wide</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>58(57).</td>
<td>Lobes plane, barely convoluted, to 2 mm wide</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>59(58).</td>
<td>Lower medulla orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>60(59).</td>
<td>Lower medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>61(60).</td>
<td>Lower medulla orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>62(61).</td>
<td>Lower medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>63(62).</td>
<td>Lower medulla orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>64(63).</td>
<td>Lower medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>65(64).</td>
<td>Lower medulla orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>66(65).</td>
<td>Lower medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>67(66).</td>
<td>Lower medulla orange-red</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>68(67).</td>
<td>Lower medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>69(68).</td>
<td>Lower medulla orange-red; hypoprotocetraric acid present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>70(69).</td>
<td>Hypoprotocetraric acid present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>71(70).</td>
<td>Lower part of medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>72(71).</td>
<td>Lower part of medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>73(72).</td>
<td>Lower part of medulla white</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>74(73).</td>
<td>Lower surface canalicate with a yellow rim; stenosporonic acid present; South America</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>75(74).</td>
<td>Lower surface plane to weakly inrolled; stenosporonic acid lacking</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>76(75).</td>
<td>Norlobaridone present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>77(76).</td>
<td>Fatty acids present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>78(77).</td>
<td>Thallus forming small rosettes; lobes weakly canalicate, convoluted, dichotomously branched</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>79(78).</td>
<td>Thallus irregular; lobes barely if at all convoluted, irregular to sublinear</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>80(79).</td>
<td>Lobes flat to barely convoluted; traces of scabrosin derivatives present; Australia</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>81(80).</td>
<td>Lobes mostly weakly to moderately convoluted; scabrosins lacking; South Africa</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>82(81).</td>
<td>Salazinic acid and/or norstictic acids present</td>
<td>X. bellulata</td>
</tr>
<tr>
<td>83(82).</td>
<td>Salazinic acid lacking (hypostictic or stictic acid present)</td>
<td>X. bellulata</td>
</tr>
</tbody>
</table>
54(53). Norstictic acid present in high concentration; Australasia
Norstictic acid lacking or present as traces

55(54). Lower medulla in part orange-red (skyrin) X. barbellata
Lower medulla white

56(55). Upper surface weakly to strongly white-maculate; rhizines dense, furcate X. substrigosa
Upper surface emaculate; rhizines moderately developed

57(56). Thallus forming small rosettes; terete laciniae developing on older lobes X. terestris
Thallus forming large irregular colonies; terete laciniae lacking X. arapiensis

58(54). Upper surface white-maculate
Upper surface emaculate

59(58). Terete laciniae present on older lobes; China X. durietzii
Terete laciniae lacking; Europe

60(59). Lobes strap-shaped, flat, to 7 mm wide X. subdiffusus
Lobes dissected, weakly convoluted, to 3 mm wide X. pseudohungarica

61(58). Lobes large and round, to 7 mm wide; South Africa X. crassilobata
Lobes smaller, not round, to 4 mm wide

62(61). Thallus forming densely pulvinate cushions; lobes short and crowded, less than 1.2 mm wide; Europe X. felkaensis
Thallus expanded, not pulvinate; lobes elongate, 0.5–4 mm wide

63(62). Lobes becoming moderately convoluted with dense rhizines
Lobes flat and plane to barely convoluted; rhizines sparse to moderate

64(63). Thallus forming compact rosettes; lobes rather short, to 5 mm wide; rhizines moderate to dense, light brown to brown; western North America X. wyomingica
Thallus expanded; lobes elongate less than 2 mm wide; rhizines dense, dark brown; South Africa X. subconvoluta

65(63). Lobes elongate, stringy, less than 1 mm wide
Lobes shorter, imbricated, 1–4 mm wide

66(65). Lobes almost entirely terete; lower surface mottled brown and black; East Africa X. cylindriloba
Lobes flat, only secondary laciniae terete; lower surface mottled yellow-brown; South Africa X. wesselsii

67(65). Lobes narrow, 1–1.5 mm wide; lower surface dark brown; South Africa X. terricola
Lobes broader, 1–4 mm wide; lower surface pale brown to brown

68(67). Secondary laciniae usually present, plane; thallus usually terricolous; Americas and Australia X. taractica
Secondary laciniae absent or poorly developed; thallus saricolous; western Europe X. sublaevis

69(53). Secondary laciniae absent or poorly developed; thallus saricolous; western Europe X. sublaeuisa
Stictic acid present

70(69). Center of thallus with terete secondary laciniae
Laciniae if present plane to convoluted

71(70). Thallus pulvinate, brittle; lower surface dark brown; Mexico X. toluencis
Thallus not pulvinate, firm; lower surface pale brown; western North America X. neowyomingica

72(70). Lobes imbricate, crowded, dissected; South America X. staedlerii
Lobes separate, flat, sublinear and sparsely dichotomously branched; South Africa and Madagascar X. subflabella

73(40). Lobes strongly convoluted, free-growing on soil; rhizines lacking; North America X. norchlorochroa
Lobes flat and plane or rarely canaliculate, weakly convoluted or subterete

74(73). Norstictic acid present; Australia X. norpumila
75(74). Salazinic or stictic acids present 75
76(75). Lobes almost all terete, stringy; East Africa X. cylindriloba
Lobes flattened, not stringy ... 77
77(76). Lower surface strongly rugose, very sparsely rhizinate; lobes curling upward
Lower surface not rugose, sparsely to moderately rhizinate; lobes not curling upward ... 78
79(77). Lobes rather narrow, to 1.5 mm wide; chalybaeizans unknown lacking; SWA/Namibia X. walteri
Lobes broader, to 4 mm wide; chalybaeizans unknown present; South Africa .. X. hyporhytida
80(79). Lower part of medulla deep orange-red (skyrin) X. rubromedulla
Medulla white ... 80
81(80). Lobes very broad and rotund, 3–8 mm wide; South Africa ... X. latilobata
Lobes narrower, obtuse, to 6 mm wide 81
82(81). Upper surface white-maculate 82
Upper surface continuous, emaculate 84
83(82). Lobes narrow and elongated, constricted, 0.5–1.5 mm wide ... X. constrictans
Lobes broader, 2–6 mm wide, not constricted 83
84(83). Lower surface canaliculate, blackening only at the center .. X. salamphizantha
Lower surface plane, black nearly to the margin X. neotasmanica
85(84). Thallus loosely adnate; lobes flattened X. versicolor
Thallus closely adnate on soil; lobes becoming subterete X. pumila
86(85). Lobes very narrow, less than 0.5 mm wide; South Africa X. eradicata
Lobes broader, 1–3 mm wide; Australia 85
87(86). Rhizines lacking or very sparse; Madagascar, Australasia X. suberadicata
Rhizines very sparse to moderately developed 88
88(87). Lower surface smooth; South Africa X. esterhuyseniae
Lower surface rugose; North America X. planilobata
89(88). Lobes sublinear-elongate, separate, somewhat constricted, black rimmed X. simulans
Lobes shorter, imbricate, not black-rimmed or constricted 90
90(89). Lower surface plane; South Africa X. austrocapensis
Lower surface with a yellowish rim toward the tips; South Africa and South America X. hypopsila

3. Key to Isidiate Species with a Brown Lower Surface

1. Medulla K– (to slowly K+ faint yellow) (containing 3-α-hydroxyarbatic, 4-O-methylhypoprotocetraric, barbatic, colensoic, diffractaic, evernic, fatty, fumarprotocetraric, hypoprotocetraric, lecanoric, lobaric, protocetraric, psoromic, succinprotocetraric acids or norlobaridone or scabrosin derivatives) ... 2
Medulla distinctly and quickly K+ yellow or yellow turning red (hypostictic, norstictic, salazinic, or stictic acids) 46
2(1). Isidia globose, short and usually unbranched, less than 0.2–0.3 mm high, usually hollow and often erumpent with pale tips 3
Isidia subglobose (when immature) to cylindrical, relatively tall and becoming branched, usually more than 0.2 mm high, the tips often darkening, solid (pustulate or erumpent in *X. constipata, X. remanens, X. scabrosa*, and *X. spargens*) ... 19

3(2). Thallus very tightly to tightly adnate; lobes less than 1 mm wide on the average ... 4
Thallus adnate to loosely adnate; lobes more than 1 mm wide 13

4(3). Medulla P+ red (fumarprotocetraric acid); Australia *X. dayiana*
Medulla P– ... 5

5(4). Medulla C+ red (lecanoric acid); South Africa *X. coneruptens*
Medulla C– ... 6

6(5). Barbatic acid present ... 7
Barbatic acid lacking ... 8

7(6). Isidia coarse, bullate, 0.2–0.3 mm in diameter; South Africa and SWA/Namibia ... *X. areolata*
Isidia slender, 0.1–0.2 mm in diameter; Australia *X. centralis*

8(6). Hypoprotocetraric acid present; SWA/Namibia *X. khomastiana*
Hypoprotocetraric acid lacking .. 9

9(8). Evernic acid present; southern Africa *X. dayiana*
Evernic acid lacking ... 11

10(9). Isidia moderate to dense, 0.15–0.25 mm in diameter; SWA/Namibia ... *X. evernica*
Isidia sparse, brolate, to 0.3 mm in diameter; South Africa *X. eruptens*

11(9). Lobatic acid present; lower part of medulla orange-red (skyrin) Australia ... *X. dayiana*
Lobatic acid lacking; medulla white ... 12

12(11). Fatty acids present; Australia ... *X. globulifera*
4-O-Methylhypoprotocetraric acid present; South Africa *X. calvinia*

13(3). Medulla P+ red or yellow (protocetraric, psoromic, or fumarprotocetraric acid) ... *X. dayiana*
Medulla P– (fatty acids, hypoprotocetraric acid, or norlobaridone) 16

14(13). Medulla P+ yellow (psoromic acid); Americas *X. lavicola*
Medulla P+ orange-red .. 15

15(14). Isidia thin, subcylindrical; protocetraric acid; Australia *X. stuartensis*
Isidia coarse and pustular, subsorediate; fumarprotocetraric acid; Lesotho ... *X. granulata*

16(13). Exuviate acid present; Australia ... *X. exuviate*
Norlobaridone or hypoprotocetraric acid present 17

17(16). Hypoprotocetraric acid present .. *X. weberi*
Norlobaridone present .. 18

18(17). Thallus saxicolous; fatty acids lacking *X. scabrosa*
Thallus terricolous; constipatic acid series present *X. constipata*

19(2). Medulla C+ red (lecanoric acid); North America *X. joranadia*
Medulla C– ... 20

20(19). Medulla P+ red or P+ yellow .. 21
Medulla P– ... 27

21(20). Medulla P+ persistent yellow (psoromic acid) 22
Medulla P+ red or orange red (protocetraric or fumarprotocetraric acids) 23

22(21). Isidia subcylindrical, simple or sparingly branched, in part erumpent; North and South America .. *X. lavicola*
Isidia cylindrical, branched, not erumpent; southern Africa, SWA/Namibia ... *X. afrolavicola*
23(21).	Protocetraric acid present	24
24(23).	Isidia tall and cylindrical, branching; southern Africa	X. fucina
	Isidia short, subcylindrical, in part erumpent, unbranched; Australia	X. Stuartensis
25(23).	Diffractaic acid present; South Africa	X. natalensis
26(25).	Medulla white	X. subramigera
	Medulla pale yellow-orange	X. krogiae
27(20).	Norlobaridone present	28
28(27).	Thallus very tightly adnate, lobes 0.3-1.3 mm wide	Thallus adnate; lobes 1-4 mm wide
29(28).	Thallus centrally areolate; lobes 0.3-0.5 mm; loxodin present	X. exillima
	Thallus lobate at the center; lobes 0.4-1.3 mm wide; loxodin absent; South Africa	X. subamplexuloides
30(28).	Isidia robust, branched, dark-tipped	X. amplexula
	Isidia subglobose to cylindrical, pale-tipped and in part erumpent to pustulate	31
31(30).	Loxodin absent; South Africa	X. amplexuloides
	Loxodin usually present; Australasia	32
32(31).	Thallus small; lobes 0.8-1.5 mm wide, strongly laciniate at the center	X. lynii
	Thallus larger with broad lobes 1-4 mm wide	33
33(32).	Saxicolous	X. scabrosa
	Terricolous	X. constipata
34(27).	Hypoprotocetraric acid present	35
	Hypoprotocetraric acid lacking	37
35(34).	Skyrin present in lower medulla	X. neoweberi
	Skyrin lacking	36
36(35).	Thallus adnate; lobes 2-3 mm wide	X. weberi
	Thallus tightly adnate; lobes 0.7-1.3 mm wide	X. endochrysea
37(34).	Scabrosin present; Australasia	X. ampleculoides
	Scabrosin lacking	40
38(37).	Thallus adnate; lobes 1-2.5 mm wide	X. remanens
	Thallus very tightly to tightly adnate; lobes 0.2-1 mm wide	39
39(38).	Thallus very tightly adnate, lobes 0.2-1 mm wide	X. immutata
	Thallus tightly adnate, lobes 0.5-1 mm wide	X. nonreagens
40(37).	Diffractaic acid present	41
	Diffractaic acid lacking	42
41(40).	Lobes narrow, 0.4-1 mm, dispersed; Australia	X. blackdownensis
	Lobes broader, 1-3 mm wide, imbricate; western North America	43
42(40).	Thallus tightly adnate; lobes 0.4-1 mm wide; Australia	X. ajoensis
	Thallus adnate; lobes to 2 mm wide	44
43(42).	Lower medulla pigmented orange-red; lobaric acid; Australia	X. zonata
	Colensoic acid present; Australia	X. ballingalliana
44(42).	3-α-Hydroxybarbatic acid present; western North America	X. moctezumensis
	Fatty acids present	45
45(44).	Unknown spargens fatty acids present; South Africa	X. spargens
	Exuviatic acid present; Australia	X. exuviata
46(1).	Medulla entirely pigmented reddish purple; isidia rugose-pustulate; South Africa	X. rubropusculta
Medulla white (lower medulla red-orange in X. saniensis) 47

47(46). Medulla pigmented orange-red in lower part; Lesotho and South Africa
... X. saniensis

48(47). Medulla entirely white ... 48

49(48). Isidia globose, mostly unbranched, 0.2–0.3 mm high, often hollow and erumpent
Isidia cylindrical, branching, to 2 mm high, entire and often black-tipped 49

50(49). Stictic acid present ... 50
Stictic acid lacking .. 55

51(50). Thallus very tightly to tightly adnate; lobes 0.2–0.8 mm wide 51
Thallus adnate; lobes 0.7–3 mm wide .. 52

52(51). Barbatic acid present; South Africa .. X. umtamvuna
Barbatic acid lacking; Australia and South Africa .. X. victoriana

53(52). Isidia erupting into large capitate subsorediate masses; southern Africa ... X. pustulosorediata

54(53). Rhizines very sparse; South Africa .. X. globisidiosa
Rhizines moderately dense; South America ... 54

55(54). Salazinic acid present (norstictic acid if present only in traces) 56
Salazinic acid lacking .. 60

56(55). Thallus loosely adnate, lobes 2–5 mm wide .. 57
Thallus tightly adnate; lobes 0.6–1.8 mm wide ... 58

57(56). Isidia dense, becoming diffuse-subcylindrical ... 59
Isidia moderate, globose to subcylindrical, not becoming diffuse X. subplittii

58(57). Isidia sparse, globose-pustulate; thallus white pruinose; South Africa X. saleruptens
Isidia moderate to dense, globose to subcylindrical ... 59

59(58). Isidia mostly erumpent; SWA/Namibia .. X. tenacea
Isidia sparsely erumpent; Australia .. X. praegnaans

60(59). Hypostictic acid present; South America .. X. kalbii
Norstictic acid present; Australia ... 61

61(60). Thallus tightly adnate; lobes 0.4–0.6 mm wide .. X. norpraegnaans
Thallus adnate; lobes 0.5–2 mm wide .. 62

62(61). Salazinic acid present .. 63
Salazinic acid lacking ... 64

63(62). Stictic acid present .. 64
Stictic acid lacking .. 68

64(63). Thallus tightly adnate; lobes 0.4–1 mm wide .. 65
Thallus adnate; lobes 1–2 mm wide ... 67

65(64). Isidia in tall masses to 2 mm high; Kenya .. X. glomerulata
Isidia short, to 0.4 mm high; South America, southern Africa 66

66(65). Rhizines stout; isidia darkening at tips ... X. neopropaguloides
Rhizines delicate, translucent; isidia pale .. X. subpallida

67(64). Stictic acid complex present .. X. plittii
Stictic acid with salazinic acid present ... X. succedans

68(63). Hypostictic acid present ... 69
Hypostictic acid lacking; salazinic and/or norstictic acid present 70

69(68). Thallus turning brown at maturity; SWA/Namibia X. harrisii
Thallus yellow-green at maturity; Australia ... X. gongylodes
70(68). Salazinic acid present with only traces of norstictic acid .. 71
Norstictic acid present as major metabolite; salazinic acid lacking or present
in near equal concentration .. 77
71(70). Isidia bullate, more than 0.3 mm in diameter; chalybeizans unknown present;
South Africa ... X. subbullata
Isidia cylindrical, less than 0.2-0.3 mm in diameter; chalybeizans unknown
lacking ... 72
72(71). Thallus adnate to loosely adnate; lobes 1.5–4 mm wide 73
Thallus more tightly adnate; lobes 0.3–1.5 mm wide .. 76
73(72). Norlobaridone present; Argentina ... X. adleri
Norlobaridone lacking .. 74
74(73). Barbatic acid present; California ... X. schmidii
Barbatic acid lacking ... 75
75(74). Isidia in part erumpent; lower surface uniformly darker brown
... X. coreana
Isidia becoming black-tipped, entire; lower surface pale brown
... X. mexicana
76(72). Center of thallus areolate; isidia short, moderately branched
... X. consociata
Center of thallus lobate; isidia becoming tall, densely branched
... X. antleriformis
77(70). Thallus tightly adnate; lobes 0.7–1.5 mm wide; Australasia
.. X. streimannii
Thallus adnate; lobes 1–4 mm wide .. 78
78(77). Barbatic acid present; western North America .. X. schmidii
Barbatic acid lacking ... 79
79(78). Hyposalazinic acid present; western North America X. maricopensis
Norstictic acid alone present or mixed with salazinic acid 80
80(79). Norstictic acid alone present; North America X. dierythra
Norstictic and salazinic acids present; Australia .. X. segregata

4. Key to Isidiate Species with a Black Lower Surface

1. Medulla K– (alectoronic, barbatic, diffractaic, evenvric, fatty, fumarprote-
ctraric, hypoprotocetraric, lecanoric, norlobaridone, or stenosporonic acids)
.. 2
Medulla K+ yellow or K+ yellow turning red (hypothamnolic, norstictic,
salazinic, or stictic acids) .. 16
2(1). Medulla C+ red (lecanoric acid) ... X. clivorum
Medulla C– (fumarprotocetraric acid or norlobaridone) 3
3(2). Medulla P+ red (fumarprotocetraric acid) .. 4
Medulla P– ... 5
4(3). Thallus loosely adnate; South Africa ... X. mbabanensis
Thallus adnate; North America .. X. piedmontensis
5(3). Norlobaridone present; Australasia .. 6
Norlobaridone lacking ... 8
6(5). Thallus very tightly adnate; lobes 0.5–1.2 mm wide X. calida
Thallus adnate; lobes 1–2.5 mm wide ... 7
7(6). Isidia globose to subcylindrical, sparingly branched, becoming erumpent
... X. verdonii
Isidia cylindrical, tall and branched .. X. thamnoides
8(5). Thallus very tightly adnate; lobes 0.2–1 mm wide 9
Thallus adnate to loosely adnate; lobes 1–4 mm wide 12
9(8). Alectoronic acid present; South America \textit{X. alectononica}
Alectoronic acid lacking; South Africa, Australia, or India 10
10(9). Hypoprotocetraric acid present; lobes 0.5–1 mm wide \textit{X. neocongensis}
Hypoprotocetraric acid lacking; lobes 0.2–0.5 mm wide 11
11(10). Stenosporonic acid present; South Africa, India \textit{X. keralensis}
Barbatic acid present; Australia .. \textit{X. xerophila}
12(8). Medulla in part orange-red in lower part \textit{X. oribensis}
Medulla white .. 13
13(12). Fatty acids present; Africa .. 14
Fatty acids lacking; Australia .. 15
14(13). Constipatic acid series present .. \textit{X. transvaalensis}
Unknown fatty acids present .. 16
15(13). Barbatic acid present .. \textit{X. vicaria}
Diffractaic acid present ... \textit{X. nashii}
16(1). Stictic acid present .. 17
Salazinic and/or norstictic acid present 18
17(16). Thallus very tightly adnate, often appearing areolate at the center; lobes 0.2–0.8 mm wide 19
Thallus adnate to loosely adnate, lobate at the center; lobes 0.5–5 mm wide 20
18(17). Isidia globose, unbranched, in part erumpent \textit{X. congestis}
Isidia cylindrical, branched or unbranched, not erumpent 19
19(18). Thallus dark brown at maturity; Australasia \textit{X. mougeotina}
Thallus yellow-green; South Africa and/or tropical America 20
20(19). Lobes short and blunt, margins black-rimmed; isidia dark-tipped \textit{X. pseudocongensis}
Lobe relatively elongate, the tips acute, margins and isidia pale \textit{X. substentophylloides}
21(16). Salazinic acid present (norstictic if present only in traces); Africa 22
Norstictic acid present as major metabolite (with or without salazinic acid) ... 23
22(21). Isidia globose, erumpent .. \textit{X. geesteranai}
Isidia cylindrical, not erumpent ... \textit{X. diadeta}
23(21). Salazinic acid present in equal concentration; South Africa \textit{X. minuta}
Salazinic acid lacking or present in traces; Australia 24
24(23). Isidia dense, more than 0.07 mm in diameter and sometimes abrading ... 25
Isidia sparse to moderate, less than 0.07 mm in diameter, not abrading ... \textit{X. fitsonii}
25(17). Medulla orange-red in the lower part \textit{X. subluminosa}
Medulla white ... 26
26(25). Upper surface uniformly white-maculate \textit{X. xizangensis}
Upper surface continuous (patchy white-maculate in \textit{X. treurensis}) 27
27(26). Isidia globose, unbranched, less than 0.2–0.3 mm high, often hollow and erumpent .. 28
Isidia cylindrical, usually branched, up to 2 mm high, solid, the tips often darkening ... 29
28(27). Stictic acid present .. 29
Norstictic or salazinic acids present ... 30
29(28). Isidia in part erumpent, esorediate; Mexico \textit{X. amableana}
Isidia erupting into subesorediate masses 30
30(29). Lobes narrow, 0.5–1.2 mm wide; South Africa \textit{X. pustulifera}
Lobes broader, 1.5–3 mm wide; South America \textit{X. wrightiana}
31(28). Salazinic acid present .. \textit{X. xerophila}
Norstictic acid present (salazinic acid, if present, in traces) 32
32(28). Salazinic acid present .. \textit{X. xerophila}
32(31). Isidia erupting into subsorediate masses; South America X. punctulata
Isidia not erupting into sorediate masses; Australia or Europe 33
33(32). Isidia entire, shiny, rarely weakly erumpent; Europe X. tinticina
Isidia erumpent; Australia ... X. isidiosa
34(31). Thallus tightly adnate; isidia mostly crumpeb X. pustuliza
Thallus loosely adnate; isidia in part crumpeb X. alexandrensis
35(27). Stictic acid present ... 36
Stictic acid lacking .. 43
36(35). Surface white-maculate; rhizines lacking; South Africa X. treurensis
Surface emaculate; rhizines sparsely to moderately developed 37
37(36). Thallus tightly adnate to adnate; lobes less than 1 mm wide; Australasia X. phillipsiana
Thallus adnate to loosely adnate; lobes 1–5 mm wide 38
38(37). Lobes sublinear, elongate; thallus loosely adnate; USA X. isidiascens
Lobes subirregular to sublinear, generally short; thallus adnate to loosely adnate .. 39
39(38). Norstictic acid lacking; lusitana unknown present X. verrucigera
Norstictic acid usually present; lusitana unknown lacking 40
40(39). Isidia very thick, about 0.2 mm in diameter; usually collected on soil; Argentina X. villamiliana
Isidia thinner, less than 0.2 mm in diameter; collected on rocks 41
41(40). Lower surface weakly canalicate and yellow-rimmed at the tips; sparsely rhizinate; South America X. catarinae
Lower surface plane at the tips; moderately to densely rhizinate 42
42(41). Isidia cylindrical, not erumpent; thallus adnate to loosely adnate; pantemperate (except for Australasia) X. conspersa
Isidia cylindrical but erumpent apically; thallus tightly adnate to adnate; Mexico .. X. amableana
43(35). Salazinic acid present (norstictic acid if present in traces) . 44
Norstictic or hypohamnolic acid present 47
44(43). Chalybaeizans unknown present; South Africa X. capensis
Chalybaeizans unknown lacking 45
45(44). Thallus tightly adnate; lobes 0.7–1.3 mm wide; South Africa .. X. diadeta
Thallus adnate to loosely adnate; lobes 1–5 mm wide 46
46(45). Thallus usually loosely attached; isidia relatively thick, 0.1–0.2 mm in diameter .. X. australasica
Thallus adnate; isidia relatively thin, less than 0.1 mm in diameter X. isidiigera
47(43). Hypohamnolic acid present; South Africa X. thammolina
Norstictic acid present as the major metabolite 48
48(47). Isidia in part lobulate; North America X. norhypopsila
Isidia cylindrical ... 49
49(48). Isidia tall (to 0.3 mm high) and densely branched, black-tipped . X. neotinticina
Isidia shorter (0.1–0.2 mm high), sparsely branched, in part erumpent X. alexandrensis

5. Key to Nonisidiate, Nonsorediate Species with a Pale Lower Surface

1. Medulla containing yellow, orange-red, or reddish purple pigments (for dull red caused by discoloration by decomposed norstictic or salazinic acids key under medulla white) 2
Medulla white ... 24
2(1). Medulla pigmented deep purple-red throughout; South Africa
Medulla pigmented yellow or yellow-orange throughout, purple-red in
patches, or orange-red in the lower part

3(2). Salazinic acid present
Salazinic acid lacking

4(2). Purple and/or red pigments scattered throughout medulla
Yellow to orange-red pigments located in lower part of the medulla or
throughout

5(4). Thallus very tightly adnate; lobes 0.3–0.6 mm wide
Thallus adnate to loosely adnate; lobes 1–4 mm wide

6(5). Pigments visible at the surface in purple-red "pores"

7(4). Medulla pigmented throughout pale yellowish orange
Medulla pigmented orange-red in the lower part (skyrin); South Africa or
Australia

8(7). Medulla (white areas) K– (barbatic, 4-O-demethylrifrac-taic, hypoprotoce-
traric, or protocetraric acids)
Medulla (white areas) K+ yellow or yellow turning red (hypostictic,
norstictic, or salazinic acids)

9(8). Medulla P+ orange-red (protocetraric acid); South Africa
Medulla P–

10(9). Thallus adnate with subirregular lobes; surface emaculate
Thallus loosely adnate with sublinear lobes; surface maculate

11(10). Lobes suberect, dark, rugose, and sparsely rhizinate toward the tips below
Lobes not suberect, pale brown, smooth, and moderately rhizinate below

12(9). Barbatic acid present; Australia
Barbatic acid lacking; southern Africa

13(12). 4-O-Methylrifrac-taic acid present
Hypoprotoctraric acid present

14(13). Thallus adnate to loosely adnate; lobes 2–4 mm wide
Thallus tightly adnate; lobes 0.8–1.5 mm wide

15(8). Hypostictic acid present; South Africa and Lesotho
Norstictic or salazinic acids present

16(15). Stenosporonic acid present
Stenosporonic acid lacking

17(15). Norstictic and salazinic acids present in equal concentration
Salazinic acid present (norstictic acid only as traces if present)

18(17). Thallus adnate; South Africa
Thallus loosely adnate; Australasia

19(17). Stenosporonic acid present; Lesotho
Stenosporonic acid lacking

20(19). Surface distinctly white-maculate; South Africa
Surface continuous, emaculate

21(20). Thallus loosely adnate; lobes sparsely rhizinate, rugose below, and dark
below at the tips
Thallus adnate; lobes moderately rhizinate and smooth, pale below at the
tips

22(21). Upper surface smooth; thallus yellow green; chalybacizans unknown lacking

X. marroninipuncta
X. dichromatica
X. endomiltoioides
X. ianthina
X. marroninipuncta
X. mutabilis
X. subochracea
X. subcolorata
X. skyrinifera
X. boonahensis
X. karooensis
X. subdomokosii
X. naudesnekiia
X. brevilobata
X. probarbellata
X. barbellata
X. tsekensis
X. denudata
X. cirrhomedullosa
Upper surface wrinkled and rugose; thallus dark greenish yellow; chalybacizans unknown present. \(X. \) springbokensis

23(20). Thallus loosely adnate with sublinear lobes 2–5 mm wide. \(X. \) subpigmentosa

Thallus adnate with shorter, subirregular lobes 1.5–3 mm wide \(X. \) ferrum

24(1). Medulla C+ rose or red (gyrophoric or lecanoric acids); South Africa 25

Medulla C– (or C+ pale orange in a few species with barbatic acid) 28

25(24). Surface effigurate-maculate. \(X. \) leucostigma

Surface continuous, emaculate. 26

26(25). Thallus adnate to loosely adnate; gyrophoric acid present. \(X. \) gyrophorica

Thallus tightly adnate to adnate; lecanoric acid present. 27

27(26). Thallus tightly adnate, appearing areolate at the center. \(X. \) worcesteri

Thallus adnate, lobate at the center. \(X. \) arida

28(24). Medulla K+ yellow or yellow turning red (echinocarpic, hypostictic, norstictic, salazinic, stictic, or unknown acids). 29

Medulla K– (4-O-demethylnotatic, 4-O-methylhypoprotocetraric, barbatic, diffractaic, vernic, fatty, fumarprotocetraric, hypoprotocetraric, protoce-traric, or psoromic acids, or norlobaridone or scabrosins). 75

29(28). Surface white-maculate or effigurate-maculate. 30

Surface continuous, emaculate. 33

30(29). Thallus adnate; surface effigurate-maculate. \(X. \) namakwa

Thallus adnate to loosely adnate; surface white-maculate. 31

31(30). Lobes narrow, 0.6–1.2 mm wide, separate. \(X. \) affinis

Lobes broader, 1–5 mm wide, mostly imbricated. 32

32(31). Thallus darkish yellow-green; chalybacizans unknown present; South Africa \(X. \) neowymningica

Thallus light yellow-green; chalybacizans unknown lacking; Europe and North America \(X. \) somloensis

33(29). Thallus loosely attached to nearly free growing on pebbles and soil; lobes more or less convoluted. 34

Thallus very tightly to loosely adnate on rock, rarely on soil; lobes plane, not convoluted. 36

34(33). Some terete laciniae present; stictic acid present; North America \(X. \) neowymningica

Terete laciniae lacking; salazinic acid present. 35

35(34). Lobes elongate, separate; lower surface dark brown; South Africa \(X. \) subconvoluta

Lobes shorter, imbricate; lower surface pale brown; North America \(X. \) wyomingica

36(33). Echinocarpic acid present; Lesotho \(X. \) putsoa

Echinocarpic acid lacking. 37

37(36). Hypostictic acid present. 38

Norstictic, salazinic, stictic, or pseudostictic acid present. 41

38(37). Fumarprotocetraric acid present; South Africa \(X. \) paradoxa

Fumarprotocetraric acid lacking. 39

39(38). Thallus loosely adnate; Australia \(X. \) metastrigosa

Thallus tightly adnate to adnate. 40

40(39). Thallus adnate; lobes sublinear, 0.6–1 mm wide; lower surface dark brown; South Africa \(X. \) quintaria

Thallus tightly adnate; lobes subirregular, 1–2 mm wide; lower surface pale brown; Australia \(X. \) suberustacea

41(37). Stictic acid or pseudostictic acid present. 42

Salazinic and/or norstictic acid present. 49
42(41). Laciniæ becoming terete in center of thallus; Mexico...X. toluensis
Laciniæ if present, plane to convoluted 43

43(42). Thallus adnate to loosely adnate; lobes 1-2 mm wide 44
Thallus very tightly to tightly adnate; lobes 0.4-1 mm wide .. 46

44(43). Lobes subirregular, crowded, imbricate, often becoming laciniate ...
... X. cumberlandia
Lobes sublinear, contiguous to subimbricate, lacking laciniæ. 45

45(44). Thallus adnate; surface deeply fissured; protocetraric acid and pseudostictic acid present; South Africa X. hybrida
Thallus loosely adnate; stictic acid present lacking; USA X. neotaractica

46(43). Thallus very tightly adnate, areolate at the center 47
Thallus tightly adnate, lobate at the center 48

47(46). Lobes black-rimmed; rhizines stout; Australia and South Africa
... X. xanthomelanoides
Lobes pale-rimmed; rhizines delicate; South Africa X. greytonensis

48(46). Lobes sublinear; Brazil X. oblisata
Lobes short and subirregular; East Africa X. convexus

49(41). Norstictic acid present as major metabolite or in equal concentration with salazinic acid 50
Salazinic acid present; norstictic acid if present only in trace amounts ... 58

50(49). Salazinic acid if present only in trace amounts 51
Salazinic present in significant concentrations 55

51(50). Thallus adnate to loosely adnate; Australia 52
Thallus tightly adnate to adnate 54

52(51). Lobes broad, 2-5 mm wide, separate to contiguous; rhizines moderate to dense .. X. arapilensis
Lobes narrower, 0.7-2 mm wide, imbricate; rhizines sparse to moderate .. 53

53(52). Thallus center laciniate, the laciniæ subascending; rhizines sparse ...
... X. elixii
Thallus not laciniate; rhizines moderate X. metaclystoides

54(51). Thallus tightly adnate; lobes dissected, 0.5-1.1 mm wide; Australia
... X. parvoclystoides
Thallus adnate; lobes not dissected, 0.8-1.5 mm wide; USA
... X. californica

55(50). Lobes very large, broad and rotund, 3-9 mm wide; South Africa X. maxima
Lobes smaller, 0.6-2 mm wide (to 6 mm wide only in X. substrigosa); Australasia or South Africa 56

56(55). Thallus loosely adnate, in part on soil; lobes 2-6 mm wide ...
... X. substrigosa
Thallus tightly adnate to adnate; lobes less than 2 mm wide 57

57(56). Thallus adnate; laciniate lobes at center becoming terete; Australia
... X. wisangerensis
Thallus tightly adnate to adnate; laciniæ lacking; SWA/Namibia ... X. auslana

58(49). Barbatic acid present; Australasia X. hybridiça
Barbatic acid lacking ... 59

59(58). Diffractaic acid present 60
Diffractaic acid lacking .. 62

60(59). Lobes broad and rotund, 2-3.5 mm wide; South Africa ... X. diffractaica
Lobes narrow, 0.7-2 mm wide 61

61(60). Lobes narrow and dissected, sublinear; Lesotho X. lesothoensis
Lobes subirregular to sublinear, short, not dissected; Australia ... X. nana
62(59). Stenosporonic acid present; Lesotho X. tsekensis
Stenosporonic acid lacking 63

63(62). Chalybeizans unknown present; South Africa 64
Chalybeizans unknown lacking 68

64(63). Thallus loosely adnate, usually collected without rock substrate
.. X. concolor
Thallus very tightly adnate to adnate on rock substrate 65

65(64). Thallus very tightly adnate, areolate at the center; lobes 0.4–0.8 mm wide
.. X. perplexa
Thallus adnate, the center lobate; lobes 1–3 mm wide 66

66(62). Surface covered with bullate-isidial structures X. subbullata
Surface smooth 67

67(63). Lobes light yellow and pruinose at the tips, darkening at the center
.. X. bibax
Lobes uniformly light or darker yellow-green, epruinose

68(63). Lobes very broad, 3–7 mm wide; South Africa X. chalybeizans
Lobes narrower, 0.3–3 mm wide 69

69(68). Thallus very tightly adnate with an areolate center; lobes 0.5–1 mm wide
.. X. neorinalis
Thallus tightly to loosely adnate, the center lobate; lobes 0.6–3 mm wide 70

70(69). Thallus tightly adnate to adnate, collected with rock substrate 71
Thallus adnate to loosely adnate, usually collected without rock substrate

71(70). Thallus with convoluted laciniae at the center; Australia X. examplaris
Laciniae absent; Australasia, USA, North America and South Africa
.. X. lineola

72(70). Thallus pulvinate with small congested lobes 0.6–1.2 mm wide; eastern Europe
.. X. felkaensis
Thallus not pulvinate; lobes 1–3 mm wide 73

73(72). Lobes laciniate, black-rimmed; Australasia X. digitiformis
Lobes entire, pale-rimmed; Europe or North America 74

74(73). Lobes mostly sublinear; North America X. coloradoensis
Lobes mostly subirregular; western Europe X. sublaevis

75(28). Medulla P+ orange-red or yellow (fumarprotocetraric, protocetraric, or
psoromic acids) 76
Medulla P– (barbatic, diffractaic, evernic, fatty, hypoprotocetraric, or
4-O-methylhypoprotocetraric acids or norlobaridone or scabrosin)

76(75). Medulla P+ yellow; psoromic acid present X. psoromifera
Medulla P+ orange-red; fumarprotocetraric or protocetraric acid present

77(76). Fumarprotocetraric acid present 78
Protocetraric acid present 86

78(77). Surface white maculate 79
Surface continuous, emaculate 81

79(78). Lobes weakly convoluted; South Africa X. leonora
Lobes plane or subascending 80

80(79). Lower surface uniformly rhizinate; Europe X. protomatrae
Lower surface with large bare areas; Africa X. phaeophana

81(78). Thallus loosely adnate 82
Thallus tightly adnate to adnate 84

82(81). Thallus pulvinate, the lobes narrow and stringy, 0.4–1 mm wide,
black-rimmed; South Africa X. almbornii
Thallus not pulvinate, the lobes broader, 1–2.5 mm wide, pale to black-rimmed ... 83

83(82). Physodalic acid present; North America ... X. moniticola
Physodalic acid lacking; Australia ... X. iniquita

84(81). Lobes very narrow, 0.2–0.6 mm wide, crowded and rugulose at the center; Australia ... X. fumigata
Lobes broader, 0.6–2.5 mm wide, not rugulose ... 85

85(84). Thallus more or less areolate at the center; lobes 0.6–1.2 mm wide; North America ... X. novomexicana
Thallus lobate at the center; lobes 1–2.5 mm wide; Australia X. pertinax

86(77). Thallus loosely adnate with broad lobes 2–6 mm wide; South Africa ... X. austroafricanus
Thallus tightly adnate to adnate; lobes 0.5–3 mm wide ... 87

87(86). 4-O-Methylidiffractaic acid present ... X. neotumidosa
4-O-Methylidiffractaic acid lacking ... 88

88(87). Lobes narrow and sublinear, 0.5–1 mm wide; SWA/Namibia ...
Lobes broader, subirregular, 1.5–3 mm wide ... 89

89(88). Lobes convex; fatty acids present; South Africa ... X. tumidosa
Lobes plane; fatty acids lacking; South Africa and Australia ...
X. verruciformis

90(75). Norlobaridone present ... 91
Norlobaridone lacking ... 100

91(90). Thallus loosely adnate with linear to sublinear lobes, usually collected free of the rock substrate ... 92
Thallus very tightly adnate to adnate with sublinear to subirregular lobes, usually collected with the rock substrate ... 95

92(91). Lobes very narrow and stringy, 0.2–1 mm wide ... 93
Lobes broader, not stringy, 0.8–3 mm wide; Australia ... 94

93(92). Surface white-maculate; lobes black-rimmed; loxodin present; Australia ... X. metamorphosa
Surface emaculate; lobes pale-rimmed; loxodin lacking; South Africa ... X. tenuioba

94(92). Thallus becoming suberect with a nearly bare lower surface ... X. furcata
Thallus appressed with a moderately rhizinate lower surface ...
X. flaviscentireagens

95(91). Thallus densely covered with small short lobules; Lesotho ...
Lobules lacking (elongate laciniae may be present); Australia or South Africa ... X. microlobulata

96(95). Center of thallus bullate-areolate; lobes 0.3–0.7 mm wide ... X. dubitata
Center of thallus lobate; lobes 0.6–3 mm wide ... 97

97(96). Thallus dark brown at the center; lobes tips yellow-green; South Africa ... X. obscurata
Thallus uniformly yellow-green ... 98

98(97). Convex secondary laciniae present with a canaliculate lower surface; Australia ... X. incrustata
Convex laciniae lacking ... 99

99(98). Loxodin lacking; South Africa ... X. norlobaronicum
Loxodin present; Australia ... X. filarszkyana

100(99). Hypoprotocetraric acid present ... 101
Hypoprotocetraric acid absent ... 104

101(100). Thallus tightly adnate; lobes 0.7–1.5 mm wide ... X. laxencrustans
Thallus adnate to loosely adnate; lobes 1.5–4 mm wide 102
102(101). Lobes inflated and puffy, convex; Lesotho \textit{X. inflata}
Lobes plane, not inflated ... 103
103(102). Thallus adnate; lobes rather crowded, 1.5–2.5 mm wide, at most weakly
rugose; Australia, South Africa \textit{X. prodomokosii}
Thallus adnate to loosely adnate; lobes becoming heavily rugose age; lobes
2–4 mm wide; South Africa \textit{X. perrugosa}
104(100). 4-O-Methylhypoprotocetraric acid present; South Africa \textit{X. competia}
4-O-Methylhypoprotocetraric acid lacking 105
105(104). Barbatic acid present ... 106
Barbatic acid lacking (or present only as a trace) 107
106(105). Thallus very tightly adnate, areolate at the center; lobes 0.7–1.5 wide; South
Africa .. \textit{X. applicata}
Thallus adnate, lobate at the center; lobes 1–2.5 mm wide; North America
and Australia .. \textit{X. barbatica}
107(105). Diffractaic acid present ... 108
Diffractaic acid lacking ... 110
108(107). Major metabolite 4-O-Demethyl diffractaic acid; Lesotho \textit{X. conjuncta}
4-O-Demethyl diffractaic acid present only as traces 109
109(108). Thallus tightly adnate; lobes 0.7–1.5 mm wide; South Africa
................................. \textit{X. rugulosa}
Thallus adnate; lobes 1–3 mm wide; North America and Australia
.. \textit{X. tucsonensis}
110(107). Evernic acid present; southern Africa 111
Evernic acid lacking .. 112
111(110). Thallus tightly adnate with an areolate center; surface epruninose South Africa
.. \textit{X. sigillata}
Thallus adnate, the center lobate; surface becoming pruinose; SWA/Namibbia
.. \textit{X. equalis}
112(110). Scabrosin derivatives present 113
Fatty or exuvic acid present (scabrosin derivatives lacking) 115
113(112). Thallus very tightly adnate with an areolate center; scabrosin unknown \(R_e\)
12 present; South Africa, Australia \textit{X. brunnthaleri}
Thallus tightly to loosely adnate; Australia 114
114(113). Thallus tightly adnate, the center not areolate; lobes 0.8–1 mm wide
.. \textit{X. cravenii}
Thallus adnate to loosely adnate; lobes 0.9–3 mm wide
.. \textit{X. bungendorensis}
115(112). Thallus very tightly adnate with an areolate center; lobes 0.5–1 mm wide;
South Africa .. \textit{X. unctula}
Thallus tightly to loosely adnate; lobes 0.7–5 mm wide 116
116(115). Lichesterinic acid present; North America \textit{X. montanensis}
Lichesterinic acid lacking ... 117
117(116). Exuvicacid present; Australia \textit{X. spargenosa}
Constipatic acid series or subdecipiens fatties present 118
118(117). Thallus adnate to loosely adnate with large rotund lobes 2.5–5 mm wide;
South Africa .. \textit{X. barklyensis}
Thallus tightly to loosely adnate with narrower, subirregular to sublinear
lobes (0.8–3 mm) .. 119
119(118). Thallus adnate to loosely adnate; unknown fatty acids present as major
metabolites ... 120
Thallus tightly adnate to adnate; constipatic acid present as the major
metabolite ... 121
120(119). Thallus adnate to loosely adnate with sublinear lobes; traces of unknown
acids and the constipatic acid series present; Australia \(\ldots \) *X. nebulosa*
Thallus adnate to more rarely loosely adnate with subirregular lobes; fatty acid unknowns 35 and 37 as major metabolites; South Africa and North America \(\ldots \) *X. subdeciptiens*

121(119). Thallus tightly adnate; lobes 0.8–1.5 mm wide; Australasia, Mexico, and Argentina \(\ldots \) *X. oleosa*
Thallus adnate; lobes 1–4 mm wide; Australasia \(\ldots \) *X. ustulata*

6. Key to Nonisidiate, Nonsorediate Species with a Black Lower Surface

1. Surface effigurate-maculate; Australia and South Africa \(\ldots \) 2
Surface continuous, emaculate or white-maculate \(\ldots \) 15
2(1). Medulla C+ red (lecanoric acid) \(\ldots \) *X. protodysprosa*
Medulla C– \(\ldots \) 3
3(2). Medulla K+ yellow or yellow turning red (norstictic, salazinic, stictic, or thamnolic acids) \(\ldots \) 4
Medulla K– (barbatic, diffractaic, evernic, fumarprotocetraric, hypoprotoctaric, notatic, protocetraric or squamatic acids) \(\ldots \) 6
4(3). Thamnolic acid present \(\ldots \) *X. cedrus-montana*
Thamnolic acid absent \(\ldots \) 5
5(4). Thallus loosely attached; lobes narrow and elongate, 0.5–1.2 mm wide; norstictic and salazinic acids present \(\ldots \) *X. pantherina*
Thallus adnate; lobes 1.5–4 mm wide; salazinic acid present \(\ldots \) \(\ldots \) *X. effigurata*
6(3). Thallus adnate with subirregular lobes \(\ldots \) 7
Thallus loosely adnate with narrow, elongate lobes \(\ldots \) 8
7(6). Medulla P+ orange-red (fumarprotocetraric acid); Australia \(\ldots \) \(\ldots \) *X. yowaensis*
Medulla P– (hypoprotoctaric acid); South Africa \(\ldots \) *X. karoo*
8(6). Medulla P+ orange-red \(\ldots \) 9
Medulla P– \(\ldots \) 11
9(8). Fumarprotocetraric acid present \(\ldots \) *X. pseudohypoleia*
Protocetraric acid present \(\ldots \) 10
10(9). Lobes 0.6–2 mm wide, stiff; rhizines sparse to moderate \(\ldots \) *X. hypoleia*
Lobes 0.5–0.7 mm wide, soft; rhizines nearly lacking to very sparse \(\ldots \) \(\ldots \) *X. mollis*
11(9). Evernic acid present; South Africa \(\ldots \) *X. neodysymposa*
Evernic acid lacking \(\ldots \) 12
12(11). Barbatic acid present \(\ldots \) *X. burmeisteri*
Barbatic acid lacking \(\ldots \) 13
13(12). Hypoprotoctaric acid present \(\ldots \) *X. hypoprotoctarica*
Hypoprotoctaric acid absent \(\ldots \) 14
14(13). Diffractaic acid present; Australia \(\ldots \) *X. mannumensis*
Notatic acid present; Australia \(\ldots \) *X. notata*
15(1). Medulla entirely deep orange-red \(\ldots \) 16
Medulla white, uniformly pale salmon-colored, or the upper part white and the lower part orange-red \(\ldots \) 17
16(15). Lobes opuntioid-constricted, strongly black-rimmed \(\ldots \) *X. endochromatica*
Lobes sublinear, not constricted, weakly black-rimmed \(\ldots \) *X. verecunda*
17(15). Medulla C+ red (gyrophoric, lecanoric, microphyllinic, or olivetoric acids); southern Africa \(\ldots \) 18
Medulla C– \(\ldots \) 23
18(17). Thallus very tightly adnate; lobes 0.2–0.9 mm wide 19
Thallus adnate to loosely adnate; lobes 0.5–5 mm wide 20
19(18). Olivetoric acid present X. heterodoxa
Gyrophoric acid present X. olivetorica
20(18). Lobes convex, appearing inflated; surface pruinos; SWA/Namibia X. serusiauxii
Lobes flat, pruinos; surface reticulate-maculate X. ceresensis
21(20). Microphyllinic acid present; thallus forming compact mats; surface faintly
Lecanoric acid present; surface continuous X. lecanorica
reticulate-maculate X. namaquensis
22(21). Thallus adnate; lobes subirregular, 1–2 mm wide X. lecanorica
Thallus loosely attached; Lobes sublinear, 2–5 mm wide X. namaquensis
23(17). Thallus very tightly adnate to tightly adnate, the center often appearing
areolate at the center, always collected with the rock substrate; lobes
0.2–0.8 mm wide 24
Thallus adnate to loosely adnate, the center lobate, collected with or without
the rock substrate; lobes usually more than 1 mm wide (except in X.
indumenica and X. lobulifera from South Africa and a few stringy loosely
adnate species) 42
24(23). Medulla K– (to slowly K+ yellowish) (barbatic, colensoic, fatty, fumarproto-
cetraric, hypoprotocetraric, or stenosporonic acids) 25
Medulla K+ yellow or yellow turning orange (constictic, hypostictic,
norstictic, salazinic, or stictic acids) 32
25(24). Medulla P+ red-orange (fumarprotocetraric acid) 26
Medulla P– 27
26(25). Lobes 0.3–0.6 mm wide; South Africa X. swartbergensis
Lobes about 1–2 mm wide; USA X. hypomelaena
27(25). Barbatic acid present; Australia X. louisii
Barbatic acid lacking; South Africa 28
28(27). Stenosporonic acid present 29
Stenosporonic acid lacking (or present only as traces) 30
29(28). Lobes elongate, black-rimmed; surface emaculate X. stenosporonica
Lobes short, blunt, pale-rimmed; surface faintly reticulate-maculate
.......................... X. shebaensis
30(28). Hydroprotocetraric acid present; lobes subirregular, 0.6–1.5 mm wide
Hydroprotocetraric acid lacking; Lobes sublinear, 0.2–1 mm wide 31
31(30). Fatty acids present X. inuncta
Colensoic acid present X. colensoica
32(23). Stictic acid present 33
Stictic acid lacking 35
33(32). Barbatic acid present; Australia X. darlingensis
Barbatic acid lacking 34
34(33). Lobes narrow, 0.2–0.6 mm wide; thallus center areolate; South Africa and
Australasia X. xanthomelaena
Lobes broader, 0.6–1.2 mm wide; thallus center bullate-lobate; USA
.......................... X. neoconspersa
35(32). Salazinic acid present (norstictic lacking or present as a minor metabolite
or in traces) 36
Constictic, hypostictic, or norstictic acids (salazinic if present only in traces
or equal with norstictic) 39
36(35). Lobes to 1 mm wide; center of thallus not areolate X. proximata
Lobes narrower, 0.3–0.6 mm wide; thallus center usually appearing areolate
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Chalybaeizans unknown present</td>
</tr>
<tr>
<td>38</td>
<td>Chalybaeizans unknown lacking</td>
</tr>
<tr>
<td>39</td>
<td>Lobes elongate, little branched; norstictic acid present as a minor metabolite;</td>
</tr>
<tr>
<td>40</td>
<td>South Africa</td>
</tr>
<tr>
<td>41</td>
<td>Lobes short, dichotomously branched; norstictic acid absent; South Africa</td>
</tr>
<tr>
<td>42</td>
<td>Norway</td>
</tr>
<tr>
<td>43</td>
<td>Chalybaeizans unknown lacking</td>
</tr>
<tr>
<td>44</td>
<td>South Africa</td>
</tr>
<tr>
<td>45</td>
<td>Hypostictic acid present; Australia</td>
</tr>
<tr>
<td>46</td>
<td>Norstictic acid present as major metabolite</td>
</tr>
<tr>
<td>47</td>
<td>Norstictic acid absent</td>
</tr>
<tr>
<td>48</td>
<td>Barbatic acid present</td>
</tr>
<tr>
<td>49</td>
<td>Barbatic acid lacking</td>
</tr>
<tr>
<td>50</td>
<td>Constictic acid present; Australia</td>
</tr>
<tr>
<td>51</td>
<td>Hypostictic acid present; South Africa</td>
</tr>
<tr>
<td>52</td>
<td>Mendulla K– (diffractaic, fatty, fumarprotocetraric, hypoprotocetraric, protocetraric, or psoromic acids, norlobaridone or scabrosin)</td>
</tr>
<tr>
<td>53</td>
<td>Mendulla K+ yellow or yellow turning red (hypostictic, norstictic, salazinic, or stictic acids)</td>
</tr>
<tr>
<td>54</td>
<td>South Africa</td>
</tr>
<tr>
<td>55</td>
<td>Medulla P+ orange-red or yellow (fumarprotocetraric, protocetraric, or psoromic acids)</td>
</tr>
<tr>
<td>56</td>
<td>Medulla P–</td>
</tr>
<tr>
<td>57</td>
<td>Fumarprotocetraric acid present</td>
</tr>
<tr>
<td>58</td>
<td>Fumarprotocetraric acid lacking (protocetraric or psoromic acids present)</td>
</tr>
<tr>
<td>59</td>
<td>Surface white-maculate; South Africa</td>
</tr>
<tr>
<td>60</td>
<td>Surface continuous, emaculate</td>
</tr>
<tr>
<td>61</td>
<td>Thallus loosely adnate; lobes broad and sublinear, 2–4 mm wide; Australia and East Africa</td>
</tr>
<tr>
<td>62</td>
<td>Thallus tightly adnate to adnate</td>
</tr>
<tr>
<td>63</td>
<td>Thallus subirregular, short, 1–3 mm wide; Australia</td>
</tr>
<tr>
<td>64</td>
<td>Thallus tightly adnate; lobes subirregular, 1–2 mm wide; USA</td>
</tr>
<tr>
<td>65</td>
<td>Protocetraric acid only</td>
</tr>
<tr>
<td>66</td>
<td>Psoromic acid with or without protocetraric acid</td>
</tr>
<tr>
<td>67</td>
<td>Lobs broad and subirregular, 2–7 mm wide</td>
</tr>
<tr>
<td>68</td>
<td>Lobs linear to sublinear, 0.5–1 mm wide</td>
</tr>
<tr>
<td>69</td>
<td>Surface emaculate to very sparsely maculate; lobes linear, soft</td>
</tr>
<tr>
<td>70</td>
<td>Surface maculate; lobes sublinear, stiff</td>
</tr>
<tr>
<td>71</td>
<td>Lobes narrow, 0.4–1 mm wide; thallus rugose and crowded</td>
</tr>
<tr>
<td>72</td>
<td>Lobes broad, 1.5–7 mm wide; thallus expanded, not crowded</td>
</tr>
<tr>
<td>73</td>
<td>Protocetraric acid present with psoromic acid</td>
</tr>
<tr>
<td>74</td>
<td>Protocetraric acid lacking</td>
</tr>
<tr>
<td>75</td>
<td>Lobes broad and apically rotund, 3–7 mm wide; South Africa</td>
</tr>
<tr>
<td>76</td>
<td>Lobes narrower, obtuse, 1.5–3 mm wide; North America</td>
</tr>
<tr>
<td>77</td>
<td>Lower part of medulla orange-red (skyrin); South Africa</td>
</tr>
<tr>
<td>78</td>
<td>Medulla white</td>
</tr>
<tr>
<td>79</td>
<td>Thallus loosely adnate; hypoprotocetraric acid present</td>
</tr>
<tr>
<td>80</td>
<td>Thallus adnate; fatty acids present</td>
</tr>
<tr>
<td>81</td>
<td>Fatty acids present</td>
</tr>
<tr>
<td>82</td>
<td>Fatty acids lacking</td>
</tr>
</tbody>
</table>
57(56). Lobes broad and round, 3–6 mm wide .. X. aliphatica
 Lobes narrower, 1–2.5 mm wide, the tips obtuse or acute 58
58(57). Thallus pulvinate; lobes black-rimmed; unknown fatty present X. atroventralis
 Thallus adnate, not pulvinate; lobes pale-rimmed; subdecipiens fatty acid
 series present ... 59
59(58). Thallus loosely adnate; lobes digitate or elongate-laciniate 60
 Thallus adnate, not laciniate .. 61
60(59). Lobes short digitate-laciniate; lower surface dull, moderately rhizinate ...
 Lobes densely laciniate, the laciniae sublinear; lower surface shiny, sparsely
 rhizinate .. X. imbricata
61(59). Thallus closely adnate; lobes 0.8–1.5 mm wide; constipatic acid as major
 metabolite; Australia ... X. nigraoleosa
 Thallus adnate; lobes 1–2.5 mm wide; unknown fatty acid as major
 metabolite .. X. subnigra
62(56). Hypoprotocetraric acid present; South Africa or USA 63
 Hypoprotocetraric acid lacking; southern Africa or Australia 66
63(62). Thallus loosely adnate; lobes sublinear ... X. tabensis
 Thallus tightly adnate to adnate, collected with rock substrate; lobes
 subirregular to sublinear .. 64
64(63). Thallus tightly adnate with an areolate center; lobes 0.6–1.5 mm wide
 Thallus adnate with a lobate center; lobes 1–2 mm wide 65
65(64). Lobes thick and strongly convex; South Africa X. toninioides
 Lobes thin, flat, strongly rugose; USA ... X. dissensa
66(62). Norlobaridone present; Australia ... X. 67
 Norlobaridone lacking ... 68
67(66). Thallus loosely adnate to suberect; rhizines sparse X. dichotoma
 Thallus adnate on rock; rhizines moderate .. X. elaeodes
68(67). Scabrosin series present; Australia ... X. rupestris
 Diffraactalic acid present .. 69
69(68). Thallus loosely adnate, suberect; rhizines sparse; SWA/Namibia X. luderitziana
 Thallus adnate; rhizines moderate; Australia ... X. everardensis
70(42). Medulla pigmented orange-red to dull reddish in lower part (skyrin or
 schenckiana unknown) or yellow to yellow-orange throughout (do not
 confuse with discoloration caused by norstic or salazinic acid) 71
 Medulla white, lacking pigments ... 75
71(70). Medulla pale yellow-orange throughout ... X. enteroxantha
 Medulla pigmented orange-red to dull rusty red in lower part only 72
72(71). Lobes broad and rotund, 2–6 mm wide; pigment dull rusty red (schenckiana
 pigment); norstic acid present ... X. colorata
 Lobes narrower, sublinear, 1–5 mm wide; pigment orange-red (skyrin);
 norstic acid lacking ... 73
73(72). Surface white-maculate; lobes in part constricted X. rubromedulla
 Surface continuous, emaculate; lobes not constricted 74
74(73). Lobes broad, 2–5 mm wide; Australia and South Africa X. luminosa
 Lobes narrower, 1–2 mm wide; South Africa .. X. surrogata
75(70). Hypostictic acid present; Australia ... X. multipartita
 Hypostictic acid lacking .. 76
76(75). Stictic acid present as the major metabolite .. 77
 Norstic or salazinic acids present ... 87
77(76). Diffractaic acid present; South Africa X. indumenica
Diffractaic acid lacking .. 78
78(77). Rhizines lacking; South Africa 79
Rhizines sparsely to moderately developed 80
79(78). Thallus tightly adnate, congested X. lobulifera
Thallus loosely attached .. X. subruginoso
80(78). Lobes broad, short, and round; surface white-maculate; rhizines very sparse;
South Africa .. X. albomaculata
Lobes narrower, subirregular to sublinear; surface continuous, emaculate;
rhizines moderately developed 81
81(80). Lusitana unknown present; norstictic acid lacking; Lesotho
.. X. protolusitana
Lusitana unknown absent; norstictic acid usually present 82
82(81). Thallus tightly adnate; lobes 0.6-1.5 mm wide 83
Thallus adnate to loosely adnate; lobes 0.6-2.5 mm wide 84
83(82). Thallus more or less areolate at the center; USA X. neoconspera
Thallus lobate at the center with contiguous lobes; Australia, South Africa
.. X. bicontinens
84(82). Lobes mostly less than 1 mm wide 85
Lobes mostly more than 1 mm wide 86
85(84). Lobes black-rimmed; Australia and South Africa X. tegeta
Lobes pale-rimmed; South Africa X. austrocapsenis
86(84). Lower surface of lobes faintly canaliculate with a raised yellowish rim at the
tips; very sparsely rhizinate at the tips; South America and South Africa
.. X. hypopsila
Lower surface plane, lacking any rim, moderately rhizinate at the tips; Europe
and North America .. X. angustiphylla
87(76). Norstictic acid present as a major metabolite or with salazinic acid in equal
concentration .. 88
Salazinic acid present; norstictic acid if present in traces only 95
88(87). Psoromic acid present; South Africa X. psornorstictica
Psoromic acid lacking .. 89
89(88). Salazinic acid lacking 90
Salazinic acid present 92
90(89). Thallus loosely adnate to suberect; surface white-maculate; SWA/Namibia
.. X. norwalteri
Thallus adnate; surface continuous, emaculate 91
91(90). Lobes black-rimmed, rugose below; East Africa X. kiboensis
Lobes pale-rimmed, smooth below; SWA/Namibia X. norcolorata
92(89). Thallus adnate; lobes broad and round, 2–6 mm wide; southern Africa
.. X. colorata
Thallus loosely adnate; lobes narrower, 1–2.5 mm wide, the tips obtuse to
acute; Australia .. 93
93(92). Lower surface very sparsely rhizinate, becoming rugose X. subnuda
Lower surface sparsely to moderately rhizinate, smooth 94
94(93). Lower surface sparsely rhizinate with simple rhizines X. congesta
Lower surface moderately rhizinate with branching rhizines
.. X. glareososa
95(87). Upper surface white-maculate 96
Upper surface continuous, emaculate 99
96(95). Lobes narrow and constricted, 0.5–1.5 mm wide X. constrictans
Lobes broader, not constricted, 1–6 mm wide 97
97(96). Thallus dark yellowish green; lobes rather short, subirregular to sublinear
.. X. synestia
Thallus light yellowish green; lobes, sublinear

98(97). Thallus leathery, pulvinate; rhizines dense, dark, long and branching

Thallus membranaceous, not pulvinate; rhizines moderate, brown, unbranched

X. africana

99(95). Lobes sublinear to linear, rugose below with very sparse rhizines

100 Lobes subirregular to sublinear, smooth and shiny below, sparsely to densely rhizinate

X. neotasmannica

100(99). Lobes narrow, 0.4–1 mm wide; not ascending; collected on rocks; Australia

Lobes broader, 1.5–4 mm wide, ascending; collected on rocks or on pebbles on soil; southern Africa

X. rubireagens

101(100). Chalybaeizans unknown present; South Africa

X. hyporhytida

Chalybaeizans unknown lacking; SWA/Namibia

X. walteri

102(99). Thallus tightly adnate to adnate, usually collected with rock substrate

Thallus loosely adnate, rarely collected with rock substrate

103(102). Thallus very tightly adnate; lobes less than 1 mm wide

X. parvoincerta

104(103). Protocetraric acid present in high concentration; Lesotho

Protocetraric acid lacking (or present in traces; Australia and South Africa

X. incerta

105(102). Lobes large and rotund, 3–8 mm wide; South Africa

Lobes narrower, apices obtuse or acute, 1–5 mm wide

106(105). Thallus with dense imbricate, black-rimmed laciniae; lower surface bare to sparsely rhizinate; Australia

X. cheelli

Thallus not densely imbricate-laciniate; lower surface moderately to densely rhizinate

107(106). Thallus with short, laciniate, black-rimmed lobes; East Africa

X. salkiboensis

Thallus with elongate, sublinear, pale or black-rimmed lobes

108(107). Thallus pulvinate; rhizines dense, becoming branched; East Africa

X. africana

Thallus not pulvinate; rhizines sparse to moderate, unbranched

109(108). Protocetraric acid present in high concentration; Lesotho

X. mapholanengensis

Protocetraric lacking or if present in traces; pantemperate

X. tasmanica

Taxonomic Treatment

The 406 species of *Xanthoparmelia* are listed below in alphabetic order. Data on type specimen labels not given in the original publication are added in brackets. Rejected, dubious, or untypifiable names and names assigned incorrectly to the genus are listed after this section under “List of Nomina Inquirenda and Excluded and Untypifiable Names.”

Xanthoparmelia adleri

Xanthoparmelia adleri Nash, Exl, and Johnston, 1987:286. [Type collection: Las Paílas, Prov. Salta, Argentina, Adler s.n. (ANUC, holotype; BAFC, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on soil and mosses, rarely rocks, to 5 cm broad, yellowish green; lobes subirregular to sublinear-elongate, 1.3–2.5 mm wide, separate to imbricate; upper surface continuous, emaculate, dull to shiny at the apices, often black-rimmed, moderately to densely isidiate, the isidia globose at first (Figure 12a), becoming subcylindrical, 0.10–0.15 mm in diameter, to 0.4 mm high, the tips syncorticate, pale, dense, and coralloid branched at maturity; medulla white; lower surface plane, light tan to pale brown, sparsely to moderately rhizinate, the rhizines pale brown, thin, simple, 0.4–1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids,
norlobaridine.

ILLUSTRATION.—Nash, Elix, and Johnston, 1987, fig. 1.

DISTRIBUTION.—Argentina.

COMMENTS.—This rare lichen is distantly related to the norlobaridine-containing Australasian species X. constipata and X. scabrosa, but the isidia are generally cylindrical and not crumplent.

Xanthoparmelia affinis

FIGURE 24a

Xanthoparmelia affinis Hale, 1987b:319. [Type collection: Franschhoek Pass on hwy R45, elev. 650 m, Cape Province, South Africa, Grid 3318 CC, Hale 78184, 26 Oct 1986 (US, holotype; LD, PRE, isotypes].]

DESCRIPTION.—Thallus loosely adnate on rocks and pebbles, somewhat pulvinate, brittle, and easily breaking apart, 4–6 cm broad, darkish yellow-green; lobes sublinear, 0.6–1.2 mm wide, elongate but somewhat constricted, separate to imbricate; upper surface faintly to partly distinctly white-maculate, shiny, isidial and soredial lacking; medulla white; lower surface plane to barely convoluted, pale brown to brown, shiny, moderately rhizinate, the rhizines brown or blackening, simple to furcate, 0.2–0.6 mm long. Pycnidia common; conidia cylindrical, 0.5 × 1–6 µm. Apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids, chalybainzins unknown (2 trace).

ILLUSTRATION.—Hale, 1987b, fig. 1.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is superficially very close to the more common South African X. constriictans, which has a jet-black lower surface. It is known from several higher elevation localities in the southwestern Cape region.

Xanthoparmelia africana

FIGURE 24b

Xanthoparmelia africana Hale, 1986b:564. [Type collection: Sirimon Track, Mt. Kenya, elev. 3300–3400 m, Kenya, Fosberg and Mwangangi 49919, 18 Mar 1968 (US, holotype; O, PRE, isotypes].]

DESCRIPTION.—Thallus loosely adnate on rock, firm, sometimes forming thick pulvinate colonies 10–20 cm or more broad and several cm thick, bright yellowish green; lobes sublinear, 2–4 mm wide, dichotomously branched, crowded, and imbricate; upper surface weakly to rather distinctly white-maculate with age, shiny, isidial and soredial lacking; medulla white; lower surface plane, black at the center with a broad brown zone at the margins, densely rhizinate, the rhizines initially brown but soon blackening, simple to furcate, 0.5–1.5 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 6–8 µm. Apothecia well developed, subpedicellate, 5–10 mm in diameter; spores 6–7 × 9–12 µm.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids.

ILLUSTRATIONS.—Hale, 1986b, fig. 2; Swinscow and Krog, 1988, fig. 181.

DISTRIBUTION.—Kenya, Uganda.

COMMENTS.—In Kenya and Uganda X. africana is found commonly at high elevations (above 3000 m), forming thick pulvinate mats. *Xanthoparmelia tasmanica*, a widespread lichen in Australasia, southern Africa, and the Americas, is the most closely related species but it lacks distinct maculae, has a more membranous thallus, and is only sparsely to moderately rhizinate. In southern Africa, a sister species, X. neotasmatica, has a wide range below 2000 m. It is thinner, not at all pulvinate, more distinctly white-maculate, and has moderately dense, brown, unbranched rhizines.

Xanthoparmelia afrolavicola

FIGURE 24c

Xanthoparmelia afrolavicola Hale, 1989a:541. [Type collection: Natal Table Mountain near Pietermaritzburg, elev. 650 m, Natal Province, South Africa, Grid 2930 DA, Hale 74104 (US, holotype; PRE, isotype].]

DESCRIPTION.—Thallus loosely adnate on rock, rather brittle and easily breaking apart, 5–7 cm broad, darkish yellow-green; lobes subirregular to sublinear, 1.5–4 mm wide, irregularly dichotomously branched, subimbricate; upper surface continuously to faintly white maculate in patches, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 12b), thin, 0.06–0.08 mm in diameter, 0.1–0.5 mm high, the tips syncorticate, blackening, unbranched or sparingly branched; lower surface plane, light brown, sparsely rhizinate, the rhizines pale brown, coarse, simple, 0.2–0.5 mm long. Pycnidia common; conidia cylindrical, 0.5 × 5–6 µm. Apothecia lacking.

CHEMISTRY.—Psoromic, 2'-O-demethylpsoromic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, figs. 1, 2.

DISTRIBUTION.—South Africa (Natal), SWA/Namibia.

COMMENTS.—The only other isidiate psoromic acid-containing species, X. lavicola from western USA, Mexico, and South America, has coarser, partially crumplent isidia, a firm, adnate thallus, and a darker, moderately rhizinate lower surface. The species is known from several widely disjunct collections in Natal and the Waterberg Plateau in Namibia.

Xanthoparmelia aggregata

FIGURE 24d

Parmelia aggregata (Knox) Brusse, 1984:320.

DESCRIPTION.—Thallus loosely attached on soil or rarely free growing, soft and delicate, 3–5 cm broad, light yellowish brown.

FIGURE 24.—Species of Xanthoparmelia: a. X. affinis (Hale 78184, holotype in US); b. X. africana (Fosberg 49919); c. X. afrolavicola (Hale 74104, holotype in US); d. X. aggregata (Stokoe 7721); e. X. ajoensis (Nash 5999); f. X. albomaculata (Almborn 6722, isotype in US). Scale in mm.
green; lobes sublinear, 0.8-1.5 wide, regularly dichotomously branched, separate, and divaricate, becoming tereete-laciniate toward the center; upper surface continuous, dull, emaculate, isidia and soredia lacking; medulla white; lower surface canalicate, pale brown or concolorous with the upper surface and with a yellowish rim, rhizines very sparse, blackening, simple, 1-1.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Evenic (major), lecanoric (trace), and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Knox and Brusse, 1983, fig. 1.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—One of the most remarkable of the terricolous lichens in both chemistry and appearance, X. aggregata is confined to an area of several square kilometers in the knersvlakte region near the Salt River in Namaqualand. Rarely free growing and vagrant, it normally grows loosely attached on elevated hardened soil patches surrounded by loose sandy quartzitic soil. Evenic acid (usually with traces of lecanoric acid) is otherwise known only in a small group of completely unrelated Namibian endemic species (X. equalis and X. evernica), in effigurate X. dysprosa, and in isidiate X. erupeps, the latter two from Cape Province.

Xanthoparmelia ajoensis

FIGURE 24e

DESCRIPTION.—Thallus adnate on rock, 2-6 cm broad, yellow green; lobes subirregular, 1-3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia subglobose to cylindrical (Figure 12c), 0.1-0.20 mm in diameter, 0.2-1.5 mm high, the tips syncorticate, brownish, sparsely branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple to sparingly branched, 0.2-0.4 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5-5.7 μm. Apothecia lacking.

CHEMISTRY.—Diffractive (major), barbatic, bacmeymecic (trace), squamatic, 3-α-hydroxybarbaric (trace), 4-O-demethylbarbatic (trace), 2-O-methylloptusatic (trace), con- stipatic (±), protoconstipatic (±), and usnic acids.

ILLUSTRATIONS.—Egan, 1975, fig. 3; Nash, 1974b, fig. 1.

DISTRIBUTION.—Western USA, Mexico.

COMMENTS.—This desert species, known from Arizona, New Mexico, and Colorado, as well as adjacent Mexico, is chemosyndromic with X. moctezumensis and X. tucsonensis and a member of the X. mexicana group (Culberson, Nash, and Johnson, 1979).

Xanthoparmelia albomaculata

FIGURE 24f

Xanthoparmelia albomaculata Hale, 1985a:281. [Type collection: 6 mi N of Houtbosch, District Pietersburg, Transvaal, South Africa, O. Alimborn 6722 (LD, holotype; US, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm and leathery, difficult to remove intact and usually collected with the rock, 8-20 cm broad, light to darker yellowish green; lobes sublinear to subirregular, 2-4 mm wide, crowded, becoming in part suberect, contiguous to imbricate; upper surface white-maculate to effigurate-maculate, especially on older lobes, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, very sparsely rhizinate, the rhizines black, coarse, simple, 0.2-0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 x 5-6 μm. Apothecia not commonly developed, subistipitate, 1-4 mm in diameter; spores 4.5 x 9-10 μm.

CHEMISTRY.—Stictic, conistic, and usnic acids.

ILLUSTRATION.—Hale, 1985a, fig. 1.

DISTRIBUTION.—South Africa (Transvaal, Natal).

COMMENTS.—This conspicuous lichen, which typically forms dense pure colonies up to 1 square meter on low sandstone outcrops and is often the only Xanthoparmelia present in moist lowland areas in Natal. It also occurs along the Drakensberg escarpment in Transvaal. Development of maculae is variable, typically nearly effigurate-maculate, at least in part, but also rarely barely discernible.

Xanthoparmelia electoronica

FIGURE 25a

Xanthoparmelia electoronica Hale, 1985a:281. [Type collection: Loma de El León, Sierra Portuguesa, Estado Lara, Venezuela, López and Smith 21216A (MERF, holotype; US, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, arcolate at the center, 2-3 cm broad, dark yellowish green, darkening with age at the center; lobes sublinear, 0.2-0.7 mm wide, contiguous to subimbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical (Figure 12d), 0.03-0.05 mm in diameter, to 0.1 mm high, the tips syncorticate, blackening, unbranched; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.1-0.3 mm long. Pycnidia lacking. Apothecia rare, adnate, to 1 mm in diameter; spores 5-6 x 9-10 μm.

CHEMISTRY.—Electoronic and usnic acids.

ILLUSTRATION.—Hale, 1985a, figs. 2, 3.

DISTRIBUTION.—Venezuela.

COMMENTS.—This is the only species in the genus with electoronic acid. Externally it resembles other very tightly adnate species so common in Australia and South Africa, such
as X. exillima or X. pseudocongensis, but is known from only one locality at relatively low elevation (1100 m) from the Andes in Venezuela.

Xanthoparmelia alexandrensis

Figure 25b

Xanthoparmelia alexandrensis Elix and Johnston in Elix, Johnston, and Armstrong, 1986:186. [Type collection: Tucker Hill, Alexandra, Otago, New Zealand, Elix 9900 (CHR, holotype).]

Description.—Thallus loosely adnate on rock, somewhat pulvinate and brittle, 3–6 cm broad, dull yellowish green; lobes sublinear, 0.8-1.5 mm wide, somewhat divarically branched and imbricate, black rimmed, secondary laciniae often well developed, 0.3–0.5 mm wide; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia subglobose to subcylindrical (Figure 12e), 0.07–0.10 mm in diameter, 0.1–0.2 mm high, the tips epicotrricate, in part erumpent but not becoming sorediate, sparsely branched; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines dark brown to black, simple or apically splayed, 0.3–0.6 mm long. Pycnidia rarely developed; conidia bispiform, 0.5 × 6–7 µm. Apothecia lacking.

Chemistry.—Norstictic (major), connosstictic, salazinic (minor), consalazinic, and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 2.

Distribution.—Australia (NSW, Vic, Tas), New Zealand.

Comments.—This rare species may be the isidiate morph of *X. subnuda*.

Xanthoparmelia aliphatica

Figure 25c

Xanthoparmelia aliphatica Hale, 1986b:566. [Type collection: 78.6 km S of Sutherland on Hwy R354, elev. ca. 900 m, Cape Province, South Africa, Grid 3220 DC, Hale 73107, 29 Jan 1986 (US, holotype; PRE, isotype).]

Description.—Thallus loosely adnate on rock, firm, 10–12 cm broad, yellowish green; lobes subirregular, 3–6 mm wide, apically subrounded, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugose and cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, densely rhizinate, the rhizines simple, 0.5–1 mm long. Pycnidia numerous; conidia bispiform, 0.5 × 7–5 µm. Apothecia numerous, substipitate, 5–8 mm in diameter; spores 5–7 × 10–12 µm.

Chemistry.—Fatty “subdecipiens” unknowns 33 and 37, constipatic acid series (+ traces), and usnic acid.

Illustration.—Hale, 1986b, fig. 3.

Distribution.—South Africa (Cape Province).

Comments.—This large, conspicuous lichen has a black lower surface, a rare trait in fatty acid-containing species shared only by *X. nigraoleosa* in Australia and *X. subnigra* and isidiate *X. transvaalensis* in Africa. It is otherwise similar to *X. barklyensis*, which differs in having a pale brown lower surface.

Xanthoparmelia albornii

Figure 25d

Description.—Thallus loosely adnate on rock, forming firm pulvinate mats, 5–8 cm broad, dark yellowish green, often blackening with age; lobes linear, 0.4–1 mm wide, dichotomously branched, subimbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown at the tips, usually whitish at the center, moderately to densely rhizinate at the tips, more sparsely toward the center, the rhizines pale brown, simple, 1–2 mm long. Pycnidia rare; conidia bispiform, 0.5 × 5–6 µm. Apothecia lacking.

Chemistry.—Fumarprotocetraric and usnic acids.

Illustration.—Hale, 1974b, fig. 1a.

Distribution.—South Africa (Cape Province).

Comments.—The loosely adnate, pulvinate thallus and elongate lobes resemble *X. affinis* (salazinic acid present). So far it is confined to sheltered sandstone ledges on the top of Table Mountain and a few nearby high elevation localities. The white center is a characteristic feature of the lower surface of this species.

Xanthoparmelia alternata

Xanthoparmelia alternata Elix and Johnston in Elix, Johnston, and Armstrong, 1986:188. [Type collection: West of Bullabulling, Dedari, 75 mi from Kambalda, Western Australia, Australia; Sammy UWA 1508 (UWA, holotype).]

Description.—Thallus loosely adnate to nearly free growing on soil, irregularly pulvinate, 3–8 cm broad, dull yellowish green; lobes sublinear, 1–3 mm wide, forming subfruticose terete laciniae toward the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface nearly plane to canaliculate, pale brown, sparsely rhizinate, the rhizines pale brown or darkening, simple to branched, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

Chemistry.—Salazinic, consalazinic, norstictic (+trace), protocetraric (+trace), and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 3.

Distribution.—Australia (NSW, Vic, SA, WA).

Comments.—This is the Australian counterpart of the South African *X. amphixantheoides*, which usually produces both salazinic acid and the chalybeaizans unknown and has more convex secondary laciniae. It is rarely collected in arid shrubland, being most common in Western Australia.
Xanthoparmelia amableana

Xanthoparmelia amableana (Gyelnik) Hale, 1988b:401.
Parmelia amableana Gyelnik, 1934c:152. [Type collection: Guadalupe, Mexico, Amable 653 (BP, lectotype; designated type in Bouly de Lescal herbarium destroyed).]

DESCRIPTION.—Thallus tightly adnate to adnate on rocks, 3–5 cm broad, dull yellow green; lobes subirregular, 0.8–2 mm wide, short and irregularly branched, congested and imbricate; upper surface continuous, emaculate, shiny, transversely cracked, and rugulose toward the center, densely isidiate, the isidia glosobe at first (Figure 12f), irregularly inflated and coarsely branched at maturity, 0.1–0.2 mm in diameter, to 0.6 mm high, the tips epicorticate, shiny, darkening, fragile, and in part erumpent at maturity; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, unbranched, 0.2–0.4 mm long. Pycnidia present but poorly developed; conidia not found. Apothecia well developed, 1–3 mm in diameter; spores not found.

CHEMISTRY.—Stictic (major), constictic, norstictic, cryptostictic (trace), connorstictic (trace), and usnic acids.

DISTRIBUTION.—Mexico.

COMMENTS.—In the original very brief description, Gyelnik emphasized the coarse isidia with darkened tips, comparing it with salazinic acid-containing *Parmelia korosi-csomae (= X. tinctina)*. A related species with stictic acid, *X. wrighitana* from Argentina, differs in having more distinctly glosobe, pale-tipped, unbranched isidia. *Xanthoparmelia amableana* is still known only from the type collection.

Xanthoparmelia amphixantha

Xanthoparmelia amphixantha (Müller Argoviensis) Hale, 1974b:486.
Parmelia amphixantha Müller Argoviensis, 1888a:139. [Type collection: Lake Albacuta, Vic., Australia, French s.n. (G, lectotype).]
Parmelia subamphixantha Gyelnik, 1938a:290. [Type collection: Victoria, Australia, Reader 6 (BP, lectotype; designated type in Bouly de Lescal herbarium destroyed).]

DESCRIPTION.—Thallus loosely adnate to free growing on soil, firm, often forming rosettes 2–3 cm broad, light yellow green; lobes sublinear, 1–2 mm wide, dichotomously branched, weakly convoluted, separate; upper surface nearly continuous to more usually strongly white-maculate (as in the type), shiny, isidia and soredia lacking; medulla white; lower surface canaliculate, pale brown or rarely darkening, the raised marginal rim concolorous with the upper surface, sparsely rhizinate, the rhizines irregularly scattered, simple to branched, brown to blackish, 1–2 mm long. Pycnidia lacking. Apothecia rare, substipitate, about 1 mm in diameter; spores 6 × 9–10 µm.

CHEMISTRY.—Stictic (major), constictic, norstictic, cryptostictic (trace), and usnic acids.

ILLUSTRATIONS.—Galloway, 1980, fig. 2; Elix, Johnston, and Armstrong, 1986, fig. 4.

DISTRIBUTION.—Australia (NSW, Vic, Tas, SA).

COMMENTS.—When describing *P. subamphixantha*, Gyelnik (1938a:269) noted, as had Müller earlier for *X. amphixantha*, the long blackened rhizines and the pale concolorous lower surface, typical features of the *X. amphixantha* group. This group includes eight well-circumscribed, closely related tericullos species with a canaliculate lower surface that are all confined to Australasia or southern Africa: sorediate *X. aurifera* and *X. concomitans*, and nonsorediate *X. bellatula*, *X. pseudoamphixantha*, *X. repians*, *X. salamphixantha*, *X. subflabellata*, and *X. willisi*. Of the latter group, *X. pseudoamphixantha* (norstictic acid) and *X. repians* (fumarprotocetraric acid) seem to represent chemotypes. *Xanthoparmelia amphixantha* is the commonest member of the group in Australia.

Xanthoparmelia amphixanthoides

Xanthoparmelia amphixanthoides (Steiner and Zahlbruckner) Hale, 1974b:486.
Parmelia amphixanthoides Steiner and Zahlbruckner in Zahlbruckner, 1926:505. [Type collection: Langsburg, Cape Province, South Africa, Bruunthaler s.n. (W, lectotype; WU, isotype).]

DESCRIPTION.—Thallus loosely adnate to nearly free growing on pebbles and soil, pulvinate, fairly firm, 3–8 cm broad, yellowish green; lobes sublinear, 0.7–1.5 mm wide, separate to imbricate, becoming laciniate with age, the ultimate branches terete, 0.3–0.5 mm wide, sometimes forming dense isidoid masses; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface weakly to strongly canaliculate, pale brown, the slightly raised marginal rim pale yellow, sparsely rhizinate, the rhizines pale brown or darkening, simple to splayed or fuscate, 0.5–2 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 6–7 µm. Apothecia rare, substipitate, 2–5 mm in diameter; spores 4 × 9 µm.

CHEMISTRY.—Salazinic, consalazinic, connorstictic (±), hypoconstictic (±), and usnic acids, chalybeizans unknown.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This tericullos species, common in Bokkeveld shale areas of southern Cape Province, is generally firmer, more robust, and less conspicuously terete-laciniate than stictic acid-containing *X. molluscus*, another common soil lichen in South Africa. It is also related to *X. alternata* from Australia, which lacks the chalybeizans unknown. A small population in the knersvlakte region of Namaqualand is nearly twice the size of the typical population (terete branches 0.5–0.8 mm wide).

Xanthoparmelia amplexula

Parmelia amplexula Stirton, 1881:69. [Type collection: Fassifern, [near Brisbane], Queensland, Australia, Bailey 262 (BM, lectotype).]
Parmelia conspersa var. polyphylloides f. exasperata Müller Argoviensis,
Xanthoparmelia amplexuloides

Figure 26a

Xanthoparmelia amplexuloides Hale, 1989a:541. [Type collection: 38 km W of Bloemfontein on north side of Hwy R64, elev. 1500 m, Orange Free State, South Africa, Grid 2926 BA, Hale 78874, 3 Nov 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate, rather soft and fragile, 5–12 cm broad, light yellowish green to yellowish green; lobes subirregular, 1–2.5 mm wide, apically subround, and irregularly branched, imbricate; upper surface continuous, emaculate, shiny, rugose with age, moderately to densely isidiate, the isidia initially subglobose (Figure 12A), subcylindrical in maturity, 0.08–0.10 mm in diameter, to 1 mm high, tips weakly to distinctly epicorticate, paler, very rarely erumpent or breaking off, at times coralloid branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia lacking. Apothecia sub stipitate, 1–2 mm in diameter; spores 5–6 × 9–11.1 μm.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

DISTRIBUTION.—Canada, USA, Sweden, Belgium, Germany, Hungary, Czechoslovakia.

COMMENTS.—This is a nonisidiate relative of *X. conspersa*. It is rather rare in Europe but common in eastern North America. Belgium specimens were identified by Lambinon and Sérusiaux (1985) as *X. hypopsila*, and I had also previously used this name for North American specimens. However, *X. hypopsila* is now considered to be a South American–South American relative of *X. conspersa*.
African species with bare, convoluted lobe tips occurring primarily on soil.

Xanthoparmelia antleriformis

Paraparmelia antleriformis Elix, 1981:349. [Type collection: 2 km SW of Pallinup River Crossing, Eyre District, W.A., Australia, Barns 602 (CRB, holotype; MEL, isotype).]

Parmelia capnoides Kurokawa, 1985:78. [Type collection: 18 mi E of Kondinin, WA, Australia, S. Nakanishi 11-c (TNS, holotype, not seen).]

Paraparmelia capnoides (Kurokawa) Elix and Johnston in Elix, Johnston, and Verdon, 1986:280.

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–6 cm broad, dark yellowish green, blackening in part; lobes sublinear, 0.3–1.5 mm wide, black rimmed, contiguous to imbricate; upper surface continuous, emaculate, shiny, becoming densely isidiate, the isidia cylindrical (Figure 12d), ~0.1 mm in diameter, to 2 mm high, the tips syncorticulate, blackening, becoming densely coralloid branched with age; medulla white; lower surface plane, pale brown, often darker toward the tips, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia 2–5 mm in diameter; spores 4–5 × 6–8 μm.

CHEMISTRY.—Salazinic, consalazinic, norstictic (±trace), and usnic acids, atranorin (±).

ILLUSTRATIONS.—Elix, 1981, fig. 1; Kurokawa, 1985, fig. 2 (as Parmelia capnoides).

DISTRIBUTION.—Australia (NSW, Vic, Tas, NT, WA), Argentina, South Africa (Cape Province).

COMMENTS.—*X. antleriformis* is separated from other salazinic acid-containing, isidiate species with a pale lower surface, such as *X. mexicana*, by the more adnate thallus, narrower lobes, and coralloid isidia. It is rather rare but widely distributed in Australia and rarely collected outside of this continent.

Xanthoparmelia arapilensis

Xanthoparmelia arapilensis (Elix and Armstrong) Filson, 1984:205.

Parmelia arapilensis Elix and Armstrong, 1983:467. [Type collection: Mt. Arapiles, Vic., Australia, Beaulgehole 1218 (MEL, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock and soil, firm, large, 6–12 cm broad, dull to light yellowish green; lobes sublinear, strap-shaped, 2–5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugose with age, isidia and soreidia lacking; medulla white; lower surface plane, pale brown, somewhat darkening at the tips, moderately to densely rhizinate, the rhizines pale brown, rather delicate, simple to sparsely branched or splayed, 0.5–1 mm long. Pycnidia common; conidia cylindrical to subbifusiform, 0.5–5–6 μm. Apothecia subapplanate, 2–5 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Norstictic, connorstictic, salazinic (±), and usnic acids.

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 1.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—The loose thallus and strap-shaped lobes remind one of *X. substipitata*, which has similar chemistry but a more or less white-maculate surface and dense, dark, branching rhizines. Another Australian species with the same chemistry, *X. eelii*, is a smaller lichen with narrower, laciniate lobes 0.7–2 mm wide.

Xanthoparmelia areolata

Xanthoparmelia areolata Hale, 1987a:251. [Type collection: Junction of Hwy N1 and Njelele Dam Road, N of Louis Trichardt, elev. 660 m, Transvaal, South Africa, Grid 2229 DD, Hale '762677, 25 Sep 1986 (US, holotype; ANUC, PPE, isotypes).]

DESCRIPTION.—Thallus very tightly adnate on rock, 5–8 cm broad, light yellowish green; lobes subirregular, 0.5–1 mm wide, contiguous to scattered, forming areolate patches; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia, the isidia irregularly globose (Figure 13a), fragile,
the tips epicorticate, pale, erumpent and becoming postulate, 0.2–0.3 mm in diameter, 0.2–0.3 mm high; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines simple, pale brown, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Barbatic, 4-O-demethylbarbatic, and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 1.

DISTRIBUTION.—South Africa (Cape Province, Transvaal), SWA/Namibia.

COMMENTS.—The isidia of *X. areolata* are relatively thick. It occurs in an extremely arid site north of the Souptansberg Mountains, in a very arid part of northwestern Bushmanland, and near Windhoek in SWA/Namibia. *Xanthoparmelia centralis* from Australia has the same chemistry but the lobes are broader (to 1.5 mm wide) and the isidia smaller.

Xanthoparmelia arida

Xanthoparmelia arida Egan and Derstine, 1978:607. [Type collection: Wire Gap at west end of south canyon, 9.2 km SE of Casa Piedra, Presidio County, Texas, USA, Derstine 817 (US, holotype).]

DESCRIPTION.—Thallus adnate on rock, 3–8 cm broad, dull yellowish green; lobes subirregular, 1–3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely rhizinate, the rhizines pale brown, simple, 0.3–0.6 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia subipitate, 2–4 mm in diameter; spores 6 × 9 μm.

CHEMISTRY.—Lecanoric and usnic acids.

ILLUSTRATION.—Egan and Derstine, 1978, fig. 2.

DISTRIBUTION.—Western North America, South Africa (Cape Province).

COMMENTS.—This is the presumptive parent morph of *X. joranadia*. It is known from only a few collections in western Texas but is widespread in Namaqualand.

Xanthoparmelia atroventralis

Figure 26e

Xanthoparmelia atroventralis (Hale) Hale, 1974b:486.

Parmelia atroventralis Hale, 1971a:346. [Type collection: Black Mt., Distr. Qachas Nek, Lesotho, Kofler s.n. (LD, holotype; US, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, brittle, pulvinate, 4–6 cm broad, dull yellowish green, darkening with age; lobes subirregular to sublinear, 1–2 mm wide, contiguous to imbricate, black rimmed, becoming densely laciniate toward the center, the laciniae appressed, 0.3–0.7 mm wide; upper surface continuous to weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines black, simple, about 0.5 mm long. Pycnidia lacking. Apothecia adnate to substipitate, 3–6 mm in diameter; spores 4 × 8 μm.

CHEMISTRY.—Unidentified fatty acid and usnic acid (det. J.A. Elix).

ILLUSTRATION.—Hale, 1971a, fig. 1b.

DISTRIBUTION.—Lesotho.

COMMENTS.—"Protolichesterinic acid?" was listed in the type description but the identity of the fatty acid is still unknown. This species occurs only at high elevations (above 3000 m) in the basaltic Drakensberg escarpment.

Xanthoparmelia aurifera

Xanthoparmelia aurifera Elix and Johnston in Elix, Johnston, and Armstrong, 1986:197. [Type collection: Bendigo, at Epsom, Vict., Australia, Johnston 1156 (CBG, holotype; MEL, isotype).]

DESCRIPTION.—Thallus loosely adnate to free growing on soil, scattered, 2–3 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide; upper surface white-maculate, shiny, sorediate, the soralia orbicular, separate; medulla white; lower surface canaliculate with a distinct rim, pale brown, sparsely rhizinate, the rhizines, black, simple to furcate, 0.5–1.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic (major), constictic, norstictic, cryptostictic (trace), usoric (+), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 5.

DISTRIBUTION.—Australia (Vic, SA).

COMMENTS.—This is a sorediate relative of *X. amphixanthe*, known only from four localities in Australia.

Xanthoparmelia ausiana

Figure 26f

Xanthoparmelia ausiana Hale, 1989a:543. [Type collection: On sheltered granite ledge, 5 km NE of Aus on Hwy 35 (road to Helmeringshausen), 4.7 km N of Hwy B4, elevation 1300 m, South West Africa/Namibia, Grid 2616 CB, Hale 81143, 27 Apr 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, somewhat dispersed, 4–8 cm broad, light yellow green; lobes subirregular, 1–2 mm wide, short, and irregularly branched, separate to subimbricate; upper surface continuous to faintly white-maculate in patches, shiny, rugulose and transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.3–0.5 mm long. Pycnidia commonly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Norstictic, salazinic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 5.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—The thallus color and lobe configuration remind one of *X. colorata*, a much larger lichen with the same chemistry but a black lower surface. The species occurs at the base of a granite dome in extremely arid southern Namibia.
Xanthoparmelia australisica

Figure 27a

Xanthoparmelia australisica D. Galloway, 1980:531. [Type collection: Karekare Beach, North Auckland, New Zealand, Bartlett s.n. (CHR, holotype; BM, isotype).]

Parmelia australisica (Galloway) Filsen, 1982:519.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather brittle, 5–20 cm broad, yellowish green; lobes sublinear, 1.8–4 mm wide, contiguous to densely imbricate; upper surface continuous to very weakly white-maculate in patches, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 13b), 0.1–0.15 mm in diameter, to 1 mm high, the tips sincoricate, blackened, becoming dense and corallloid branched with age; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, 0.3–0.6 mm long. Pycnidia lacking. Apothecia rather rare, substipitate, 3–8 mm in diameter; spores 4.5–9.10 μm.

CHEMISTRY.—Salazinic, norstictic (±trace), protocetraric (±trace), and usnic acids.

ILLUSTRATION.—Galloway, 1980, fig. 3.

DISTRIBUTION.—Australia (all states), New Zealand, North America, Argentina, Ethiopia, Kenya, Tanzania, South Africa (Cape Province).

COMMENTS.—This widespread, variable species is differentiated from closely related *X. isidigera* by thicker isidia; *X. diadeta* from South Africa is tightly adnate with lobes 0.7–1.3 mm wide; and the European *X. tinctina* has globose unbranched isidia.

Xanthoparmelia australiensis

Figure 27b

Xanthoparmelia australiensis (Crombie) Hale, 1974b:486.

Parmelia australiensis Crombie, 1879:395. [Type collection: Table Mountain, Tasmania, Australia, Brown 525 (BM, lectotype).]

DESCRIPTION.—Thallus vagrant, free growing on soil, leathery, breaking apart into separate lobes, 5–6 cm broad, light yellowish green; lobes sublinear, 2–5 mm wide, strongly convoluted, separate; upper surface continuous, emaculate, shiny, cracked and rugose with age, isidia and soredia lacking; medulla white; lower surface plane, inrolled, pale brown to brown, chrizinate or very sparsely rhizinate, the rhizines pale brown, about 0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone, lioxodin, and usnic acid.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 6.

DISTRIBUTION.—Australia (SA).

COMMENTS.—This remarkable vagrant desert lichen is confined to the Nullarbor area and one locality in the Flinders Ranges. It is morphologically similar to the more common Australian *X. convoluta*, which contains salazinic acid. As pointed out by Filson (1982), the locality given on the type collection is almost certainly in error, for the species has never been collected in Tasmania.

Xanthoparmelia australoafriicana

Figure 27c

Xanthoparmelia australoafriicana (Stirton) Hale, 1974b:486.

Parmelia australoafriicana Stirton, 1877:212. [Type collection: "Diamond Fields," Shaw s.n. (BM, lectotype; GLAM, PRE, isotype).]

Parmelia conspersa var. *australoafriicana* (Stirton) Stizenberger, 1890:152.

Parmelia suberucina Müll. Argoviensis, 1891:377. [Type collection: South Africa, MacOwan s.n. (BM, lectotype; G, isotype).]

Hypogymnia rhodesiana Dodge, 1959:46. [Type collection: Forest Hill kop, Makoni, Zimbabwe, Eyles 825, Jul. 1917 (BM, holotype; FI-Dodge, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, firm and rather leathery, 4–12 cm broad, dull yellowish green, darkening in part with age; lobes subirregular to sublinear, 2–6 mm wide, contiguous to imbricate; upper surface continuous to faintly white-maculate, shiny, almost always deeply transversely cracked, isidia and soredia lacking; medulla white; lower surface plane, rugose with age, brown to dark brown at the tips, light brown and dull toward the center, shiny, very sparsely to moderately rhizinate, the rhizines brown, simple to branched, 0.5–1.5 mm long. Pycnidia commonly developed; conidia bifusiform, 0.5 × 6–7 μm. Apothecia substipitate, 3–9 mm in diameter; spores 5 × 9–10 μm.

CHEMISTRY.—Protocetraric and usnic acids, unidentified fatty acid (±).

DISTRIBUTION.—South Africa (Transvaal, Cape Province), Zimbabwe.

COMMENTS.—The large, firm thallus with deep transverse fissures and the chemistry set this common lichen apart. It often grows on the tops of large exposed boulders. Müll. Argoviensis (1891:377) did not recognize it as a *Xanthoparmelia* at all, only as a relative of *Parmelia tillacea* with a pale rugose lower surface. A related species in South Africa, *X. subcolorata*, has narrower, often separate, subascending lobes and skyrin in the lower medulla.

Xanthoparmelia australocapensis

Figure 27d

Xanthoparmelia australocapensis Hale, 1987b:320. [Type collection: Plateklip, near Stellenbosch, Garisde s.n., 15 Jul. 1942 (BOL, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely adnate on soil or rocks, 6–12 cm broad, often pulvinate, light yellowish green; lobes sublinear, 0.6–1.2 mm wide, elongate, and dichotomously branched, divaricately imbricate, lobate-laciniate, weakly convoluted at the tips, the laciniae about 0.3 mm wide; upper
surface continuous, emaculate, shiny at the tips but turning dull and rugose toward the center, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines rather coarse, sparsely furcate, 0.3–1.2 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rarely developed, substipitate, 5–10 mm in diameter; spores usually poorly developed, 5 × 9 μm.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 3.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Of the related loosely adnate species in this difficult group with stictic acid, South African *X. simulans* has sublinear, irregularly constricted, strongly black rimmed lobes and *X. hypopsis* from southern South America and southwestern Cape Province, has broader lobes (1–2.5 mm wide) and very sparse rhizines. *Xanthoparmelia tegeta* from Australasia and South Africa is smaller, black-rimmed, and more closely adnate on rocks. *Xanthoparmelia planilobata*, a rare mostly terricolous lichen from western USA, has sparse rhizines and a rugose lower surface. This species is rather rarely collected in southwestern Cape Province.

Xanthoparmelia balingalliana

Figure 27e

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 1–4 cm broad, dull yellowish green; lobes subirregular to sublinear, 0.5–1 mm wide, dichotomously branched, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately to densely isidiate, the isidia subglobose at first (Figure 13c), becoming irregularly inflated to cylindrical, 0.07–0.1 mm in diameter, 0.1–0.5 mm high, the tips epicorticate, pale or darkening, weakly erumpent, sparsely branched; medulla white; lower surface plane, shiny, pale brown but darker at the tips, sparsely to moderately rhizinate, the rhizines very pale brown, simple, 0.1–0.3 mm long. Pycnidia lacking. Apothecia sessile, 1–2 mm in diameter; spores 4–6 × 8–10 μm.

CHEMISTRY.—Colensoic acid (major), scabrosin 4-acetate-4'-butyrate (**etrace**), scabrosin 4-acetate-4'-hexanoate (**etrace**), scabrosin 4-4'-dibutyrate (**etrace**), scabrosin 4,4'-dicacetate (**etrace**), unknown fatty acids, and usnic acid (det. J. Johnston).

ILLUSTRATION.—Elix and Johnston, 1987, fig. 1.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—This is the only adnate nonisidiate species with a pale brown lower surface and barbaric acid. *Xanthoparmelia apiculata* and *X. rugulosa*, two barbaric acid-containing species from South Africa with a pale lower surface, are more tightly adnate. The single collection from Texas differs somewhat in minor metabolites (Elix, 1982), but I have not checked this material.

Xanthoparmelia barbellata

Xanthoparmelia barbellata (Kurokawa) Hale, 1984:79.

Parmelia barbellata Kurokawa, 1982:35. [Type collection: 9 mi E of Cooma on Numeralla road, N.S.W., Australia, *Kurokawa* 6452 (TNS, holotype).]

DESCRIPTION.—Thallus loosely adnate on soil or pebbles, firm, subpulvinate, 4–6 cm broad, yellowish green; lobes subirregular to sublinear, 1–4 mm wide, contiguous to imbricate, often black rimmed, becoming laciniate with age; upper surface continuous to faintly white-maculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane, pale to brown with some orange mottling, moderately rhizinate, the rhizines rather long and becoming furcate, brown, 0.5–1.5 mm long. Pycnidia common; conidia cylindrical to sub-bifusiform, 0.5 × 6–7 μm. Apothecia rare, substipitate, 2–3 mm in diameter; spores 4–6 × 6–7 μm.

CHEMISTRY.—Norstictic, salazinic, connorstictic, consalazinic, and usnic acids and skyrin.

ILLUSTRATION.—Kurokawa, 1982, fig. 1.

DISTRIBUTION.—Australia (NSW, ACT), New Zealand.

COMMENTS.—This rare, mostly terricolous lichen resembles

X. barbellata is known from several localities in arid southeastern Queensland.
Xanthoparmelia, which has dense rhizines and lacks skyrin.

Xanthoparmelia barklyensis

FIGURE 27f

Xanthoparmelia barklyensis Hale, 1986b:566. [Type collection: Barkly Pass, about 18 km N of Elliot along Hwy R58, elev. ca. 1800 m, Cape Province, South Africa, Grid 3127 BB, *Hale* 73015, 9 Feb 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 8–15 cm broad, bright yellow green; lobes subirregular to sublinear, 2.5–5 mm wide, contiguous to imbricate, the center becoming short laciniate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately to densely rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 μm. Apothecia numerous, adnate, 3–5 mm in diameter; spores 5–7 × 9–11 μm.

CHEMISTRY.—Fatty "subdecipiens" unknowns 33 and 37 (major), constipastic (±trace), protoconstipastic (±trace), and usnic acid.

ILLUSTRATION.—Hale, 1986b, fig. 4.

DISTRIBUTION.—South Africa (OFS, Cape Province).

COMMENTS.—This species appears to be related to *X. alpatica*, which has a pale brown lower surface. Both occur on Cave and Molteno sandstones in eastern Cape Province. The only other obvious relative of this large lichen with a pale lower surface is *X. subdecipiens*, which is adnate to loosely adnate.

Xanthoparmelia beatricea

FIGURE 28a

Xanthoparmelia beatricea Hale, 1987a:253. [Type collection: 5 km NE of Hwy N7 on the Doese-Glime road at the railroad crossing, elev. 200 m, Cape Province, South Africa, Grid 3118 BC, *Hale* 78606, 30 Oct 1986 (US, holotype; ANUC, LD, PRE, isotypes).]

DESCRIPTION.—Thallus vagrant, free growing on soil, firm and leathery, 6–10 cm broad but scattered over several meters, light yellow green; lobes sublinear, strongly convoluted and forming tube-like branches, 4–10 mm wide when expanded, little branched, 1–4 cm long, twisted and contorted; upper surface continuous, emaculate, dull, becoming strongly rugose with age, isidia and soredia lacking; medulla white; lower surface plane, sparsely to moderately rhizinate, the rhizines brown, simple to sparsely furcate, 0.3–0.5 mm long. Pycnidia rarely developed; conidia cylindrical, 0.5 × 9–12 μm. Apothecia lacking.

CHEMISTRY.—Protocetraric and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 2.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This soil lichen is unique among the vagrant, free-growing species in chemistry and also has the second largest conidia in the genus (*X. heterodoxa* has conidia to 14 μm long). It occurs in a well trampled sheep paddock in the Salt River area of Namaqualand.

Xanthoparmelia bellatula

FIGURE 28b

Xanthoparmelia bellatula (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:203.

Parmelia bellatula Kurokawa and Filson, 1982:521. [Type collection: 6 mi W. of Redcliffs along Werrimull Road, Vict., Australia, *Kurokawa* 6620 (TNS, holotype; MEL, isotype).]

DESCRIPTION.—Thallus loosely adnate to nearly free growing on soil, firm but easily breaking apart, 2–4 cm broad, light yellowish green; lobes sublinear, 0.6–1.5 mm wide, dichotomously branched, separate to imbricate with secondary weakly convoluted laciniae usually developing at the center with age; upper surface continuous, emaculate, shiny to dull, isidia and soredia lacking; medulla white; lower surface calcareous with a yellowish rim, concolorous with the upper surface or pale brown, sparsely rhizinate, the rhizines pale brown or darkening, 0.5–1 mm long. Pycnidia lacking. Apothecia subglobose, 2–3 mm in diameter; spores absent.

CHEMISTRY.—Salazinic, consalazinic (±), norstictic (trace), protocetraric (trace), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1982, fig. 3.

DISTRIBUTION.—Australia (NSW, Vic, SA, WA).

COMMENTS.—This rare soil lichen falls in the *X. amphiantha* group but lacks white maculation on the surface. It is found in the Murray mallee scrub region with other terricolous species such as *X. eilifii, X. pseudoamphiantha, X. pumila*, and *X. terrestris*.

Xanthoparmelia benyovszkyana

FIGURE 28c

Xanthoparmelia benyovszkyana (Geylik) Hale, 1974b:486.

Parmelia benyovszkyana Geylik, 1934c:153. [Type collection: Tanana, Madagascar, *Decary* s.n. (PC, lectotype; BP, isolectotype).]

DESCRIPTION.—Thallus loosely adnate on pebbles to nearly free growing on soil and rocks, soft, more or less pulvinate, 4–5 cm broad, dull yellowish green, darkening with age; lobes linear, 0.2–0.6 mm wide, finely divaricately branched, the ultimate branches terete; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface weakly calcareous with an indistinctly raised rim, pale brown or darkening, very sparsely rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–7 μm. Apothecia lacking.

CHEMISTRY.—Stictic, norstictic, consstictic, and usnic acids.

ILLUSTRATION.—Des Abbayes, 1961, fig. 2.

DISTRIBUTION.—Madagascar.

COMMENTS.—The rhizines of this rare Madagascar species
are concentrated in small patches. It is very similar in aspect to X. suberadicata, which is black below.

Xanthoparmelia bibax

Figure 28d

Xanthoparmelia bibax (Brasse) Hale, 1988b:401.
Parmelia bibax Brasse, 1986a:105. [Type collection: 17 km W of Citrusdal, top of Middelberg Pass, elev. 1100 m, Cape Province, S. Africa, Grid 3219 AA, F. Brasse CH4684 (PRE, holotype; LD, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 4–10 cm broad, bright yellowish green but darkening with age at the center; lobes subirregular to sublinear, 0.5–2 mm wide, irregularly branched, contiguous and crowded; upper surface continuous, emaculate, dull, becoming rugulose and short laciniate with age, more or less white pruinose at the tips, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely to moderately rizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–7 μm. Apothecia rarely developed, substipitate, 1–2 mm in diameter, the rim white pruinose; spores 6–7 × 8–10 μm.

CHEMISTRY.—Salazinic, consalazinic (+), norstictic (+), and usnic acids, chalybacizins unknown.

ILLUSTRATION.—Brasse, 1986a, fig. 1.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is confined to, and quite common in, Namaqualand. It presents an unusual banded aspect with light yellow lobe tips and darkening center.

Xanthoparmelia bicondensens

Xanthoparmelia bicondensens Elix and Nash in Nash and Elix, 1987:471. [Type collection: Ermindura Flora Reserve, Victoria, Australia, Elix 1987, 10 Apr 1986 (CBG, holotype; ASU, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–5 cm broad, yellowish green; lobes sublinear, 0.7–1.5 mm wide, sparingly dichotomously branched, contiguous to barely imbricate, black-rimmed toward the tips; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely to moderately rizinate, the rhizines black, robust, simple, 0.3–0.5 mm long. Pycnidia common; conidia cylindrical, 0.5 × 6–7 μm. Apothecia well developed, adnate, 1–2 mm in diameter; spores 4–5 × 7–8 μm.

CHEMISTRY.—Stictic, constictic, norstictic, cryptocystic (trace), and usnic acids.

ILLUSTRATION.—Nash and Elix, 1987, fig. 5.

DISTRIBUTION.—Australia (NSW, VIC), South Africa.

Figure 28.—Species of Xanthoparmelia: a, X. beatricea (Hale 78606, holotype in US); b, X. bellatala (Hale 68554); c, X. benovitskyana (des Abbayes 3); d, X. bibax (Hale 72166); e, X. blackdownensis (Verdon 5243, holotype in CBG) (×10); f, X. boonahensis (Rogers 7640, holotype in MEL) (×3). Scale in mm.

Xanthoparmelia blackdownensis

Figure 28e

Xanthoparmelia blackdownensis Elix and Johnston, 1987:360. [Type collection: Blackdown Tablelands, Leichhardt district, Queensland, Australia, Verdon 5243, 27 Jan 1983 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, rather dispersed, 1–3 cm in diameter, dull yellowish green; lobes subirregular to sublinear, 0.4–1 mm wide, stellate, irregularly branched, weakly constricted, separate to subumbiculate; upper surface continuous, emaculate shiny, transversely cracked with age, sparsely to moderately isidiate, the isidia cylindrical (Figure 13a), 0.07–0.1 mm in diameter, 0.1–0.3 mm high, the tips syncordicate, blackening, mostly unbranched; medulla white; lower surface plane, pale to light brown but darker at the tips, sparsely to moderately rizinate, the rhizines pale to light brown, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Diffractic (major), 4-0-demethylbarbaric, 3-o-hydroxybarbaric (trace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 2.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—This species is comparable with the North America X. ajoensis, which is adnate with much broader lobes (1–2 mm wide) and larger isidia. It has been found only at the type locality.

Xanthoparmelia boonahensis

Figure 28f

Xanthoparmelia boonahensis Elix and Johnston, 1987:354. [Type collection: Summit of Mt. French, Mt. French National Park, near Boonah, Queensland, Australia, Rogers 7640 (MEL, holotype).]

DESCRIPTION.—Thallus adnate on rock, 2–3 cm broad, pale yellow green; lobes sublinear, 0.8–1.5 mm wide, contiguous to subumbiculate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part yellow-orange; lower surface plane, pale to brown, moderately rizinate, the rhizines brown or blackening, simple, 0.3–0.5 mm long. Pycnidia commonly developed; conidia bifusiform, 0.5 × 5–7 μm. Apothecia adnate, poorly developed, 0.5 mm in diameter; spores 5–6 × 8–9 μm.

CHEMISTRY.—Barbatic (major), 4-O-demethylbarbaric (minor), constipatic (trace), protoconstipatic (trace), and usnic acids, skyrin.

ILLUSTRATION.—Elix and Johnston, 1987b, fig. 2.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—The adnate thallus resembles X. barbatica,
another barbatic acid-containing species in Australia and North America, but the pigmented lower medulla is distinctive. This is the only species containing skyrin and barbatic acid together. It is known only from the type locality.

Xanthoparmelia brevilobata

Figure 29a

Xanthoparmelia brevilobata Hale, 1987a:253. [Type collection: Naudesnek, elev. 2180 m, Cape Province, South Africa, Grid 3028 CB, Hale 76866, 9 Oct 1986 (US, holotype; ANUC, PRE, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rocks, coriaceous, 5–8 cm broad, dark yellowish green; lobes subirregular, 0.8–1.5 mm wide, irregularly branched, short and crowded, contiguous to imbricate; upper surface continuous, emaculate shiny, transversely cracked and sometimes bullate-rugose in older parts, isidia and soreidia lacking; upper medulla white, lower medulla ochre; lower surface plane, shiny, brown or partly tinged with ochre, sparsely to moderately rhizinate, the rhizines brown, simple, 0.1–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–5 μm. Apothecia well developed, adnate, 2–5 mm in diameter, the disc plane; spores 5–6 × 8–9 μm.

CHEMISTRY.—Hypostictic (major), hyposalazinic (minor), hyposortetic, and usnic acids, skyrin, unidentified anthraquinones (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987a, fig. 3.

DISTRIBUTION.—South Africa (Cape Province), Lesotho.

COMMENTS.—This rare high elevation species is close to *X. sanieis*, another Drakensberg lichen which differs in having pustulate isidia. It also resembles *X. subcrustacea* from Australia. Both contain the hypostictic acid complex but *X. subcrustacea* lacks skyrin and has a thinner thallus. Another species in this complex from South Africa, *X. naiduenskia*, contains stenosporonic acid in addition to the hypostictic acid complex.

Xanthoparmelia brunnthaleri

Figure 29b

Xanthoparmelia brunnthaleri (Steiner and Zahlbruckner) Hale, 1974b:486. *Parmelia brunnthaleri* Steiner and Zahlbruckner in Zahlbruckner, 1926:505. [Type collection: Matjesfontein, Grose Karoo, Cape Dist., South Africa, Brunnthaler s.n. (WU, lectotype; W, islectotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, the center appearing areolate, 3–6 cm broad, dull yellowish green; lobes subirregular to sublinear, 0.5–1.5 mm wide, rather short, weakly convex, contiguous; upper surface continuous, emaculate shiny, transversely cracked, isidia and soreidia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.3 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia numerous, adnate, 1–2 mm in diameter; spores 6–7 × 10–11 μm.

CHEMISTRY.—Scabrosin 4,4'-diacetate, unknown scabrosin R_f12, and usnic acid (det. J.A. Elix).

DISTRIBUTION.—South Africa (Cape Province), SWA/Namibia, Australia.

COMMENTS.—Geylnek (1935:22) noted the morphological similarity with *X. worcesteri*, a common karoo lichen with lecanoric acid. The present species, however, is by comparison quite rare in the karoo.

Xanthoparmelia bungendorensis

Figure 29c

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 7–10 cm broad, yellowish green; lobes subirregular to sublinear, 0.9–3 mm wide, contiguous to imbricate, laciniate with age and somewhat subascending, sometimes black rimmed; upper surface continuous, emaculate shiny, isidia and soreidia lacking; medulla white; lower surface plane, pale brown to brown, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subepitrichous, 2–8 mm in diameter; spores 5–6 × 8–10 μm.

CHEMISTRY.—Scabrosin 4,4'-diacetate, scabrosin 4-acetate-4'-butyrate, scabrosin 4,4'-dibutyrate, scabrosin 4-acetate-4'-hexanoate, and usnic acid.

ILLUSTRATION.—Elix, 1981, fig. 2.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, NT).

COMMENTS.—No other adnate or loosely adnate species contain the scabrosin derivatives. The only relative is tightly adnate *X. cravenii* from arid central Australia, and it contains additional fatty acids.

Xanthoparmelia burmeisteri

Figure 29d

Xanthoparmelia burmeisteri (Elix) Egan, 1982:129. *Parmelia burmeisteri* Elix ("burmeisteri"), 1976:664. [Type collection: 10 km S of Nimmitabel, Snowy Mountains Hwy., N.S.W., Australia, Elix 1613 (MEL, holotype; CANB, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, more or less pulvinate, 6–10 cm broad, dark yellowish green; lobes sublinear to linear, 0.5–1 mm wide, divaricate-imbricate and in part subascending, black rimmed; upper surface fuscate-maculate, shiny, isidia and soreidia lacking; medulla white; lower surface plane, black, dull, sparsely rhizinate, the rhizines

Figure 29.—Species of *Xanthoparmelia*: a, *X. brevilobata* (Hale 76866, holotype in US); b, *X. brunnthaleri* (Hale 78547); c, *X. bungendorensis* (Elix 1831); d, *X. burmeisteri* (Elix 1994); e, *X. xalida* (Elix 21180, holotype in CBG (<10)); f, *X. californica* (Schmidt 464, holotype in US). Scale in mm.
black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6 μm. Apothecia subditipitate, 3–10 mm in diameter; spores 4–6 × 6–8 μm.

CHEMISTRY.—Barbatic (major), 4-O-demethylbarbatic, and usnic acids.

ILLUSTRATION.—Elix, 1976, fig. 2.

DISTRIBUTION.—Australia, South Africa (Cape Province).

COMMENTS.—This is a typical member of the *X. hypoleia* complex. It is comparatively rare in Australia, where *X. hypoprotocetrarica* and *X. nota* are much more common, and is known only from a few collections in Namuqaland in South Africa, where *X. hypoleia* and *X. hypoprotocetrarica* predominate.

Xanthoparmelia calida

Figure 29e

DESCRIPTION.—Thallus tightly adnate on rock, 2–4 cm broad, yellowish green or darkening to olive-brown or blackish in older lobes; lobes subirregular to sublinear, 0.5–1.2 mm wide, short and irregularly branched, blackish rimmed at the tips, contiguous; upper surface continuous, emaculate opaque, transversely cracked with age, moderately to densely isidiate, the isidia subglobose at first, mostly irregularly inflated to cylindrical with age, 0.08–0.15 mm in diameter, 0.2–0.5 mm high, the tips epicorticate, pale or darkening, sparingly short coralloid branched; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, robust, simple, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone (major), scabrosin 4-acetate-4’-butyrate, scabrosin 4-acetate-4’-hexanoate, scabrosin 4,4’-dibutyrate, unknown scabrosin (trace), and usnic acid.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 3.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—This rare species is externally close to *X. exillina*, a more widespread species in Australia and southern Africa with a pale brown lower surface.

Xanthoparmelia californica

Figure 29f

Xanthoparmelia californica Hale, 1984:73. [Type collection: Folsom, Sacramento Co., California, USA, *Schmidt* 464 (US, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–6 cm broad, yellowish green; lobes subirregular, 0.8–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.3–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–6 μm. Apothecia adnate, 1–3 mm in diameter; spores 4–5 × 8–9 μm.

CHEMISTRY.—Norstictic, connorstictic, and usnic acids.

ILLUSTRATION.—Hale, 1984, fig. 1.

DISTRIBUTION.—Western North America.

COMMENTS.—This is the only nonisidiate, norstictic acid-containing adnate *Xanthoparmelia* in North America. Two isidiate species with this chemistry, *X. derythra* (pale below) and *X. norhypopsila* (black below), are apparently unrelated.

Xanthoparmelia califololioides

Figure 30a

Xanthoparmelia califololioides Adler, Elix, and Johnston in Elix and Johnston, 1986b:505. [Type collection: Las Pailas, Salta Province, elev. 2280 m, Argentina, *Adler* s.n., Feb 1986 (BAFC, holotype; ANUC, US, isotypes).]

DESCRIPTION.—Thallus loosely adnate to nearly free growing on soil and pebbles, 5–10 cm broad, light yellowish green; lobes subirregular to sublinear, 1.5–3 mm wide, subdichotomously branched, lobulate toward the center, the laciniae elongate, 0.7–1.2 mm wide, plane to weakly convoluted, imbricate; upper surface continuous, emaculate, shiny, soredia and isidium lacking; medulla white; lower surface plane, weakly canaliculate, light brown, sparsely to moderately rhizinate, the rhizines pale brown, simple or sparsely branched, 1–2 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Salazinic (major), consalazinic, norstictic (μtrace), protocetraric (μtrace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1988a, fig. 14.

DISTRIBUTION.—Argentina.

COMMENTS.—Related to *X. taractica*. *X. califololioides* has well developed laciniae and is convoluted. It has been collected only a few times in Salta Province.

Xanthoparmelia calvinia

Figure 30b

Xanthoparmelia calvinia Hale, 1986b:567. [Type collection: Akkerendam Nature Reserve near Calvinia, elev. 1000 m, Cape Province, South Africa, Grid 3119 BD, *Hale* 75103, 29 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate on rock and small pebbles, 4–6 cm broad, light brownish yellow green; lobes short, subirregular, 0.5–2 mm wide, contiguous; upper surface continuous to faintly reticulate white-maculate at the tips, shiny, becoming strongly rugose and finally coarsely isidiate at the center, the isidia bullate-globose, 0.1–0.3 mm in diameter and 0.2–0.3 mm high, the tips epicorticate, erumpent and bursting open to reveal a hollow center; medulla white; lower surface plane, brown to dark brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—4-O-Methylhypoprotocetraric (major), 4-O-demethylnotatic, and usnic acids, unknown Rf 30 (major).

ILLUSTRATION.—Hale, 1986b, fig. 5.

DISTRIBUTION.—South Africa (Cape Province).
COMMENTS.—This unusual karoo lichen has hollow globose isidia (not unlike those of *X. evernica*) and peculiar reticulate maculation on the surface. Chemically it is related to *X. competita*, which lacks isidia.

Xanthoparmelia camtschadalis

Figure 30c

Borrera camtschadalis Acharius, 1814:223. [Type collection: Kamchatka, USSR, Tileisii s.n. (Hf-Ach, lectotype; UPS, isotype.)]

DESCRIPTION.—Thallus vagrant, free growing on soil, intact and firm or sometimes fragmenting, 3–7 cm broad, dull to light yellowish green; lobes sublinear, 1.3–3 mm wide, separate to overlapping; upper surface uniformly white-maculate, shiny, isidia and soreidia lacking; medulla white; lower surface convoluted but not strongly inrolled, with a more or less well-developed pale yellowish rim, pale brown or darkening at the tips, sparsely to moderately rhizinate, the rhizines pale brown or darkening, thin, simple to furcate, 0.3–1 mm long. Pycnidia lacking. Apothecia very rare, sub stipitate; spores not found.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids.

ILLUSTRATION.—Elenkin, 1901b, pl. 3.

DISTRIBUTION.—Europe, USSR, China, Mongolia, western North America.

COMMENTS.—The vagrant *Xanthoparmelia*, of which *X. camtschadalis* was the first described species, have always held a fascination for lichenologists. They are conspicuous lichens on soil in deserts, steppes, and high plains of North America (Williams, 1892), eastern Europe, USSR (Elenkin, 1901b), Mongolia, Australia, and South Africa. According to the present taxonomy, *X. camtschadalis* is characterized by the presence of salazinic acid and a white-maculate surface. It occurs in Eurasia and North America (Colorado northward into Canada). The other species in this group, *X. australiensis*, *X. beatricea*, *X. chlorochroa*, *X. convoluta*, *X. idahoensis*, *X. kotisepholia*, *X. lipophloica*, *X. neochlorochroa*, *X. norchlorochroa*, *X. norconvoluta*, *X. pachyclada*, and *X. vagans* lack maculae (except for unusual *X. idahoensis*) and have various chemistries. A related European species, which should perhaps be included here, is *Xanthoparmelia subdiffusae*, but it differs in having flattened, rarely weakly revolute lobes.

Unfortunately there has long been confusion among lichenologists on the identity of *X. camtschadalis*, which has often been called *X. vagans* by European lichenologists. In 1924 Du Rietz attempted to establish, once and for all, the identity of *Parmelia camtschadalis* ("Was ist *Borrera camtschadalis\)?"). He had one important advantage over earlier workers, namely access to Acharian and other types in UPS. He concluded that Eschweiler (1833) was the first one to use the name incorrectly, for what is now known as *Everniastrum cirrhatum* (Fries) Sipman, a tropical corticous species. Vainio (1921), Hue (1898), Müller Argoviensis (1887), and others followed this concept in the 19th century.

This mistaken idea was given further credence by Savicz (1914), who, unable to find "*Parmelia camtschadalis* Eschw." on trees in Kamchatka, concluded that the Acharian specimen collected by Tierius was mislabeled and that the lichen on soil in Kamchatka was *P. conspersa* f. *stenophylla*. A duplicate of the Tierius collection in FH-Tuck (ex herb. Floerke) and labelled *P. congruens*, is *X. camtschadalis*. Mereschkowsky (1920b), one of the most perceptive but unappreciated lichenologists in the early part of this century, did not agree with Savicz since he found a specimen of a *Xanthoparmelia* in Geneva, labeled Kamchatka ("misit Pailbin"), which he correctly identified as *Parmelia camtschadalis*. He died before a promised revision of this group was finished. Savicz (1923) responded with outrage to Mereschkowsky's conclusions and proposed that the name *P. cirrhata* be adopted for *P. camtschadalis*.

In any event Du Rietz (1924) correctly identified *Borrera camtschadalis* as a *Xanthoparmelia* but synonymized both it and *P. stenophylla* (Acharius) Du Rietz (= *X. somloensis*) under *P. mollissula*, a South African species. He then placed the other vagrant, terricolous species, including *X. chlorochroa* and *X. vagans*, under *P. mollissula* var. *vagans*. Both *X. chlorochroa* and *X. vagans* are in fact good species but occur only in the Americas. In one of his last papers on the *Xanthoparmelia* Gyelnik (1938a) synonymized most of the European taxa, as well as Australian *X. convoluta*, under *Parmelia vagans*.

Elenkin (1901b) took a special interest in the vagrant species so well known in the Russian steppes. After conducting ecological studies, he concluded that the vagrant forms were derived from *P. conspersa* f. *stenophylla*. Mereschkowsky (1918) carefully studied this group in the Crimea. He found typical *P. conspersa* growing attached to rocks, but on a nearby plateau collected free-growing, convoluted species which he called *P. conspersa* f. *vaga* (= *X. subdiffusae*). He was convinced that these vagrant forms represented a self-perpetuating population distinct from those growing attached to rock. Cretzsch (1933) briefly discussed this unusual group in Roumania, and Mattick (1951) classified them as "aerolith- enes." Klement (1950) leaned toward the theory that vagrant lichens, while probably derived from adnate saxicolous forms, are genetically distinct and represent good species. Obviously the biological relationship between the adnate and vagrant
forms is still unresolved, but most field evidence indicates that vagrant forms behave as distinct species.

Xanthoparmelia capensis

FIGURE 30d

Xanthoparmelia capensis Hale, 1986b:567. [Type collection: 27 km E of Swellendam on N2, elev. ca 200 m, Cape Province, South Africa, Grid 3420 BA, Hale 74046, 3 Feb 1986 (US, holotype; PRE, isotype).]

Parmelia capitula Brusse, 1988:539.

DESCRIPTION.—Thallus adnate on rock, 4–6 cm broad, pale yellowish green; lobes subirregular, 1.2–2.0 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, isidia globose to subcylindrical (Figure 13e), 0.08–0.15 mm in diameter, 0.4–0.7 mm high, the tips syncorticate or weakly epicorticate, pale to black-tipped, sometimes breaking off apically, mostly unbranched; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, about 0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, chalybaeizans unknown.

ILLUSTRATION.—Hale, 1986b, fig. 6.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is similar to stictic acid-containing *X. verrucigera* in adnation and lobe configuration but has a different chemistry. It is relatively rare in southern Cape Province. *Xanthoparmelia australasica* from Australia and New Zealand, another isidiate species with salazinic acid (but without the chalybaeizans unknown), is more loosely adnate and has sublinear lobes.

Xanthoparmelia catarinae

FIGURE 30e

Xanthoparmelia catarinae Hale, 1989a:543. [Type collection: Florianopolis-Estreito, Santa Catarina, Brazil, Poeschmann-Hajkóvá in Věžda, Lichenes Selecti Exsiccati 761 (US, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, brittle, 5–8 cm broad, yellowish green; lobes sublinear, 0.8–2 mm wide, dichotomously branched, weakly convoluted at the tips, imbricate; upper surface continuous, emaculate, shiny, sparsely to moderately isidiate, the isidia initially subglobose (Figure 13f), irregularly cylindrical at maturity, 0.14–0.18 mm in diameter, 0.2–0.8 mm high, the tips syncorticate, darkening, mostly simple to coralloid branched; medulla white; lower surface plane, black, with a barely raised dark to yellowish rim, shiny, very sparsely rhizinate below the tips, sparsely rhizinate toward the center, the rhizines black, coarse, unbranched, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 x 5–6 μm. Apothecia lacking.

CHEMISTRY.—Stictic (major), constictic, norstictic, cryptostictic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1989a, figs. 6, 7.

DISTRIBUTION.—Brazil.

COMMENTS.—This is the isidiate morph of *X. hypopsila*. It is differentiated from the North American *X. isidiscens* by the subconvolvate, yellow-rimmed lobe tips and narrower lobes.

Xanthoparmelia cedrus-montana

Xanthoparmelia cedrus-montana Brusse in Knox and Brusse, 1983:145.

Parmelia stenophylla f. hypomelana Vainio ex Lyng. 1937:89. [Type collection: Ceres, Cape Prov., South Africa, Leslie [476] (TUR, Vainio herb. no. 34575, holotype).]

Parmelia cedrus-montana (Brusse) Brusse, 1984:320.

DESCRIPTION.—Thallus loosely adnate on rock, at times pulvinate, 5–8 cm broad, dull yellowish green; lobes sublinear to linear, 1–2 mm wide, elongate, separate to imbricate; upper surface effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, dull, sparsely to moderately rhizinate, the rhizines black simple, 0.5–1 mm long. Pycnidia rare; conidia weakly bifusiform, 0.5 x 4–6 μm. Apothecia common, substipitate, 2–6 mm in diameter; spores 6–8 x 10–12 μm.

CHEMISTRY.—Thamnolic, squamatic, dehydroxythamnolic (trace), caperatic, and usnic acids.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 2.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This is a member of the *X. hypoleia* group and the only species in *Xanthoparmelia* with thamnolic acid. A few specimens seem to contain only squamatic acid. It has a very restricted range in lower Namaqualand, where it is common.

Xanthoparmelia centralis

FIGURE 30f

Xanthoparmelia centralis Elix in Johnston in Elix, Johnston, and Armstrong, 1986:207. [Type collection: 13 km N of Angas Downs Homestead, Liddle Hills, N.T., Australia, Elix 11172 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–7 cm broad, darkish yellow green; lobes subirregular, 0.5–1.5 mm wide; upper surface continuous, emaculate, shiny, rugulose with age, moderately isidiate, the isidia globose to subcylindrical (Figure 13g), 0.8–1.8 mm in diameter, to 0.2 mm high, the tips epicorticate, in part erumpent, simple or sparsely branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Barbatic, 4-O-demethylbarbatic, 3-α-hydroxybarbatic, and usnic acids.
ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 7.

DISTRIBUTION.—Australia (NT).

COMMENTS.—This rare Australian endemic is one of two species in the genus with barbatic acid and erumpent isidia. The other, X. areolata from South Africa, has much thicker isidia (to 0.3 mm in diameter) and lobes 0.5–1 mm wide. It is morphologically similar to salazinic acid-containing X. praegnans.

Xanthoparmelia ceresina

Figure 31a

Xanthoparmelia ceresina Hale, 1986b:568. [Type collection: Ceres Nature Reserve at Michells Pass, 1.5 km SW of Ceres on Hwy R46, elev. ca. 600 m, Cape Province, South Africa, Grid 3319 AD, Hale 72008, 24 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock and soil over rock, pulvinate, easily breaking apart, 5–7 cm broad, darkish yellow green; lobes sublinear, 0.5–0.7 mm wide, sparsely dichotomously branched, crowded and appressed-imbricate; upper surface continuous or faintly reticulate-maculate and rugose at the tips, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, very sparsely rhizinate, the rhizines black, coarse, simple, 0.3–0.5 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 5–7 μm. Apothecia not fully developed, 0.6–1 mm in diameter; spores not found.

CHEMISTRY.—Microphyllinic (major), 4-O-demethylmicrophyllinic (major), 4-O-methyloliveteric (trace), and usnic acids (det. C. Culberson and A. Johnson).

ILLUSTRATION.—Hale, 1986b, fig. 7.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This curious species, known only from one locality in Fynbos, forms brittle, somewhat pulvinate colonies. The appressed sublinear lobes and faint reticulate-maculation, as well as the unusual chemistry (only occurrence of microphyllinic acid in the genus), are unique.

Xanthoparmelia cerosina

Figure 31b

Parmelia cerosina Vainio in van der Byl, 1931:13. [Nomen nudum.]

Parmelia cerosina Vainio in Lyne, 1937:87. [Type collection: Ceres, Cape Province, South Africa, Leslie 474 (TUR, lectotype).]

DESCRIPTION.—Thallus adnate on rock, 3–8 cm broad, darkish yellow green; lobes subirregular to sublinear, 0.8–2 mm wide, imbricate; upper surface continuous, shiny, transversely cracked and rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, pale to dark brown, shiny, moderately rhizinate, the rhizines brown, stout, simple, 0.3–0.8 mm long. Pycnidia common; conidia cylindrical, 0.5 × 4–6 μm. Apothecia common, subdiscoid, 3–5 mm in diameter, the rim entire to crenate; spores 4–6 × 9–11 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, and usnic acids.

DISTRIBUTION.—South Africa (SW Cape Province).

COMMENTS.—Known from the Table Mountain and nearby Ceres region, X. cerosina is close to X. phaeophana but lacks maculate, has short, more evenly dispersed rhizines, and is so adnate that it cannot be removed easily from the rock substrate.

Xanthoparmelia chalybaeizens

Figure 31c

Xanthoparmelia chalybaeizens (Steiner and Zahlbruckner) Hale, 1974b:486.

Parmelia schenckiana var. chalybaeizens Steiner and Zahlbruckner in Zahlbruckner, 1926:510. [Type collection: Matjesfontein, Cape Distr., South Africa, Brunthaler s.n. (W, lectotype; WU, isolectotype).]

Parmelia chalybaeizens (Steiner and Zahlbruckner) Gyelnik, 1936:128.

Parmelia conspersula f. chalybaeizens (Steiner and Zahlbruckner) Gyelnik, 1938b:24.

Parmelia byllii Gyelnik, 1938a:270. [Nomen in herbario as synonym of P. schreuderiana Gyelnik.]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, firm, 4–8 cm broad, rather light yellowish green, rarely darkening with age (as in the type specimen); lobes subirregular to sublinear, 1–3 mm wide, rather short, irregularly branched, rarely short laciniate, contiguous to imbricate; upper surface continuous, emaculate, shiny, becoming cracked and rugose with age, isidia and soredia lacking; medulla white or turning uniformly pale yellow in some herbarium specimens; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 6–7 μm. Apothecia very common, subdiscoid, 2–8 mm in diameter; spores 6–7 × 10–12 μm.

CHEMISTRY.—Salazinic, consalazinic, norstictic (±trace), and usnic acids, chalybaeizens unknown.

DISTRIBUTION.—South Africa (Cape Province, Ciskei).

COMMENTS.—This is one of the commonest adnate Xanthoparmeliae in Namaqualand and karoo regions of South Africa. It has a wide range of variation in color and lobe width. *Xanthoparmelia concolor* differs in being loosely adnate, and *X. springbokensis* is consistently darker, white-maculate, more loosely adnate, and contains skyrnin.

Figure 31.—Species of Xanthoparmelia: a, X. ceresensis (Hale 72008, holotype in US); b, X. cerosina (Hale 78150); c, X. chalybaeizens (Brunthaler s.n., lectotype in W); d, X. cheelii (Boorman L1314); e, X.chlorochroa (Imshaug 11394); f, X. cirrhomedullosa (Hale 80605, holotype in US). Scale in mm.
Xanthoparmelia cheeii

DESCRIPTION.—Thallus loosely adnate on rock, brittle, more or less pulvinate, 5–10 cm broad, yellowish green; lobes sublinear, 0.9–2 mm wide, black rimmed, imbricate and becoming densely short laciniate at the center, the laciniae 0.5–1 mm wide; upper surface continuous to very weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, simple to sparsely furcate, 0.3–1 mm long. Pyenia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia rare, substipitate, 2–7 mm in diameter; spores 6–7 × 10–11 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 8.

DISTRICTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This widespread Australasian species is related to and intergrades with *X. tasmanica* but can usually be identified by the brittle, densely short-laciniate thallus. A collection in M (Green s.n., Australia) was called *Parmelia pulvinata* by Krempelhuber but never published.

Xanthoparmelia chlorochroa

DESCRIPTION.—Thallus vagrant, free growing on soil, firm and leathery, intact or fragmenting into separate lobes, 3–10 cm broad, yellowish green; lobes sublinear, 1.5–5 mm wide, dichotomously branched, separate to overlapping; upper surface continuous, emaculate, shiny, rugulose and cracked with age, isidia and soredia lacking; medulla white; lower surface rather strongly convoluted but not always completely inrolled, pale to dark brown, often with a lighter raised rim toward the tips, moderately to densely rhizinate, the rhizines pale brown, simple to furcate, 0.3–1 mm long. Pyenia rare; conidia bifusiform, 0.5 × 6–7 μm. Apothecia very rare, substipitate, 2–4 mm in diameter; spores 5–6 × 11–13 μm.

CHEMISTRY.—Salazinic, consalazinic (±), lobaric (±), and usnic acids.

ILLUSTRATION.—Egan, 1975, fig. 1; Williams, 1892, fig. 1 (as *Parmelia molluscata*).

Xanthoparmelia cirrhomedullosa

DESCRIPTION.—Thallus adnate on sheltered rock, leathery, 5–7 cm broad, darkish yellow green; lobes subirregular with rotund tips, 1–4 mm wide, short, contiguous at the margin, crowded at the center; upper surface uniformly white-maculate, shiny, strongly rugose with age, isidia and soredia lacking; upper medulla white, lower medulla orange; lower surface plane, brown or faintly orange, smooth to rugulose, sparsely to moderately rhizinate, the rhizines brown, simple, 0.5–1 mm long. Pyenia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia substipitate, 2–4 mm in diameter; spores 4–5 × 9–10 μm.

CHEMISTRY.—Salazinic and usnic acids, skyrin, chalybeicizans unknown.

ILLUSTRATION.—Hale, 1989a, fig. 7.

DISTRICTION.—South Africa (Cape Province).

COMMENTS.—The combination of a white-maculate surface and the medullary pigment skyrin is found only in this species and in *X. subcolorata*, a large, subirregular-lobed, loosely adnate lichen with an eroding lower surface. It is known only from the type locality in eastern Cape Province.

Xanthoparmelia clivorum

DESCRIPTION.—Canada, western USA, Mexico.

COMMENTS.—After describing this distinctive American lichen (first as *Parmelia conspersa terrestris*) in his herbarium, Tuckerman (1882) reduced it to a synonym of *Parmelia molluscata*, thus helping to perpetuate the confusion surrounding the correct names in this group of vagrant lichens (see discussion above under *X. camtschadalis*). Williams (1892) first reported the discovery of apothecia in this species, and also called it *P. molluscata*. Willey (1896) found another fertile plant and continued to use this name. However, *X. chlorochroa* seems to be endemic to the high plains and semi-desert areas of western North America and Mexico. It is closely related to the Australian *X. convoluta*, which has more strongly inrolled lobes. It also intergrades with *X. wyomingica*, which is not vagrant. Stiittic acid-containing *X. vagans* is morphologically similar, occurring with *X. chlorochroa* in the central Rocky Mountains but extending also into South America.
DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, 3–6 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, short and crowded, black-rimmed, imbricate; upper surface continuous, emaculate, shiny, transversely cracked and rugulose with age, moderately isidiate, the isidia globose to subcylindrical and basally constricted (Figure 136); 0.11–0.18 mm in diameter, to 0.3 mm high, the tips syncorticate, pale, mostly unbranched; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, coarse, 0.2–0.7 mm long, unbranched. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Lecanoric and usnic acids.

ILLUSTRATION.—Brusse, 1984, fig. 2.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Known only from the type collection on a large sheltered ledge exposed to wintertime coastal mists, X. eliivorum may be the isidiate morph of X. namaquensis, a common lichen farther north in arid Namakaland.

Xanthoparmelia colensoica

Figure 32a

DESCRIPTION.—Thallus tightly adnate on rock, 1–3 cm broad, yellow green but darkening with age; lobes sublinear, 0.4–1 mm wide, dichotomously branched, separate to contiguous, black-rimmed near the apexes; upper surface continuous, emaculate, shiny, transversely cracked and areolate at the center. Soredia and isidia lacking; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple or tufted, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Colensoic (major), norcolensoic (minor), stenosporonic (trace), lividic (trace), physodic (trace), oxyphysodic (trace), and usnic acids (det. J.A. Elias).

ILLUSTRATION.—Elias and Johnston, 1988a, fig. 3.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This rare lichen is closely related to X. stenosporonica, a rather common species in the Drakensbergs of Transvaal and Natal, which contains stenosporonic acid as the major component. *Xanthoparmelia shebaiensis* has colensoic acid as a minor component but can be distinguished easily by the reticulate white-maculate surface.

Xanthoparmelia coloradoensis

Figure 32b

DESCRIPTION.—Thallus adnate on rock, often appearing loosely adnate but difficult to collect free of rock, firm and leathery, 4–12 cm broad and often coalescing to form extensive colonies, bright yellowish green; lobes subirregular, 2–6 mm wide, apically rotund, contiguous to imbricate, at times black rimmed; upper surface continuous, emaculate, dull, coarsely pruinose with age, especially at the tips, becoming transversely cracked, isidia and soredia lacking; upper medulla white, lower medulla usually dull rusty colored, at least in part; lower surface plane, black, dull, sparsely rhizinate, the rhizines black, coarse, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subipitate, 3–15 mm in diameter; spores 6–7 × 10–12 μm.

CHEMISTRY.—Salazinic (major), norstictic (major), consalazinic, and usnic acids, schenekiana pigment (±).
DISTRIBUTION.—South Africa (Cape Province), SWA/Namibia.

COMMENTS.—This is the most conspicuous *Xanthoparmelia* in the South African karoo. In a sample of 53 specimens, only three completely lacked the medullary pigment; none contained caperatic acid, which occurs widely in other members of the *X. schenckiana* group. See *X. schenckiana* for further discussion.

Xanthoparmelia competita

Figure 32d

Xanthoparmelia competita Hale, 1986b:568. [Type collection: 3.6 km N of Hwy R62 on Kruisrivier Road, E of Calitzdorp, elev. ca 500 m, Cape Province, South Africa, Grid 3321 BB, Hale 73019, 30 Jan 1986 (US, holotype; PRE, isotype).]

Description.—Thallus tightly adnate on rock, 3–6 cm broad, dull yellowish green; lobes subirregular, 0.7–1.5 mm wide, short and contiguus; surface continuous to finely reticulately rugose or white-maculate at the tips, shiny, becoming strongly rugose-bullate toward the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5–6–7 μm. Apothecia numerous, adnate, 2–4 mm in diameter; spores 5–6–9–10 μm.

Chemistry.—4-O-Methylhypoprotocetraric (major), hypoprotocetraric acid (minor), 4-O-demethylnotatic, and usnic acids, an Rf=30 unknown (major) (det. J.A. Elix).

Illustrations.—Hale, 1986b, fig. 8; Brusse, 1986a, fig. 6 (as *Parmelia exigina*).

DISTRIBUTION.—South Africa (Cape Province).

Comments.—Chemically this species is closely related to *X. calvina*. While lobe configuration is similar, *X. competita* is brighter yellow and lacks isidia. It appears to be restricted to southern Cape Province.

Xanthoparmelia concolor

Xanthoparmelia concolor (Sprengel) Hale, 1974b:486.

Parmelia concolor Sprengel, 1827:328. [Type collection: Cape of Good Hope, South Africa, [Ecklon s.n.] (S, lectotype).]

Xanthoparmelia chalybaeizans Hale, 1987a:258. [Type collection: Nieuwoudtville Nature Reserve off Hwy R27, elev. 800 m, Cape Province, South Africa, Grid 3119 AC, Hale 72216, 29 Jan 1986 (US, holotype; PRE, isotype).]

Description.—Thallus loosely adnate on rock, rarely on soil, rather stiff and firm, 6–10 cm broad, dull yellowish green; lobes subirregular to sublinear, 1–2.5 mm wide, imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately to densely rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 4–8 mm in diameter; spores 5–6 × 8–9 μm.

Chemistry.—Salazinic, consalazinic, norstictic (±trace), and usnic acids, chalybeitzans unknown.

Illustration.—Hale, 1987a, fig. 11 (as *X. chalybaeizans*).

Distribution.—South Africa (Cape Province).

Comments.—This species has the same chemistry as *X. chalybaeizans*, a widespread tightly adnate to adnate lichen in Namaqualand and the karoo of South Africa. It is rather common in southern Cape Province. The epithet *concolor* was used by Nylander and other nineteenth-century workers for *X. leonora*, a species which contains fumarprotocetraric acid. Although the authenticity of Sprengel collections is always in doubt since his herbarium was sold and disposed of at various times, the Stockholm specimens appear to be labeled by Sprengel himself and represent the only lectotypifiable material I have seen.

Xanthoparmelia concomitans

Description.—Thallus free growing on soil, very fragile, forming small rosettes 0.5–1 cm broad, yellowish green; lobes linear, 0.5–1.5 mm wide, dichotomously branched, separate; upper surface continuous to weakly white-maculate, shiny, sorediate at the lobe tips, the soralia orbicular, ~1 mm in diameter; medulla white; lower surface canaliculate, pale brown, with a weakly developed pale yellowish rim, sparsely rhizinate, the rhizines thin, black, sparsely furcate, 0.5–1.5 mm long. Pycnidia and apothecia lacking.

Chemistry.—Fumarprotocetraric, succinprotocetraric (±), protocetraric (±trace), fatty acid (trace), and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 9.

Distribution.—Australia (Vic, WA), New Zealand.

Comments.—Although related to nonsorediate *X. reptans*, it has a much smaller thallus and restricted distribution in semi-arid paddocks on the South Island and in two localities in South Australia.

Xanthoparmelia condaminensis

Figure 32e

Xanthoparmelia condaminensis Elix and Johnston, 1987:363. [Type collection: E of Condamine, Condamine Highway, Queensland, Australia, Ballingall and Scott s.n., 18 Aug 1984 (CBG, holotype).]

Description.—Thallus loosely attached to soil or pebbles...
and debris, forming irregular subpulvinate patches or rosettes 8–10 cm broad, fairly firm but easily breaking apart, pale yellowish green; lobes sublinear, 1–2 mm wide, elongate, dichotomously branched, weakly convoluted, separate to subimbriccate and entangled, marginally sparsely laciniate, the laciniae about 0.5 mm wide; upper surface continuous, emaculate, shiny to opaque, convex, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale tan to brown or darker at the tips, very sparsely rhizinate, the rhizines concolorous with the lower surface, simple or tufted, robust, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–6 μm. Apothecia rare, subpedicellate, 1–3 mm in diameter; spores 4–6 × 8–10 μm.

CHEMISTRY.—Constituents, protoconstituents, and usnic acids, scabrosin 4-acetate-4′-butyrate (±), scabrosin 4-acetate-4′-hexanoate (±), and scabrosin 4′,4″-dibutyrate (±).

ILLUSTRATION.—Elix and Johnston, 1987, fig. 4.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—In morphology this terricolous lichen resembles *X. terrestris*, which contains norstictic and salazinic acids. It is also very close to the South African *X. epigaea*, which has more distinctly convoluted lobes and the subdecipiens fatty acid series. It is known only from the type collection.

Xanthoparmelia coneruptns

Xanthoparmelia coneruptns Hale, 1989a:545. [Type collection: On overhanging sandstone ledge, on Hwy R364, 32.4 km S of jct with R27, elev. 600 m, Cape Province, South Africa, Grid 3119 CD, *Hale* 79859, 24 Mar 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate on rock, light yellowish green, 3–5 cm broad; lobes subirregular, 0.4–1 mm wide, short and crowded, imbricate; upper surface continuous to faintly reticulate white-maculate, shiny to dull white, pruinose with age, transversely cracked, pustulate-sorediate, the pustules entire or erupting, breaking open and become coarsely sorediate; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, ~2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Lecanicic and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 8.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This is a chemotype of *X. eruptns* and in fact the commonest member of this pustulate-sorediate group. It is typically found on the underside of large overhanging sandstone cliffs in localities in western Cape Province, south of Namaqualand, subject to winter fogs.

Xanthoparmelia congesta

Xanthoparmelia congesta (B. Stein) Hale, 1974b:486.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 7–14 cm broad, yellowish green or darkening; lobes sublinear, 1–2 mm wide, becoming imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subcylindrical, 3–10 mm in diameter; spores 5–6 × 8–10 μm.

CHEMISTRY.—Norstictic, salazinic (±), connorstictic (trace), and usnic acids. The type description did not include salazinic acid, which may occur in equal concentration with norstictic acid.

ILLUSTRATIONS.—Filson and Rogers, 1979, pl. 11b; Kurokawa and Filson, 1975, fig. 1.
DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—The only related species with norstictic acid is X. glareosa, another Australian endemic with more elongate, moderately rhizinate lobes.

Xanthoparmelia

Xanthoparmelia conjuncta

Figure 33b

Xanthoparmelia conjuncta Hale, 1989a:545. [Type collection: On small dolerite boulders in meadow, 2.6 km NW of Sani Pass, elev. 3900 m, Lesotho, Grid 2929 DB, Hale 81327, 6 May 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, leathery, 4–6 cm broad, dark yellowish green; lobes subirregular, 0.7–1.5 mm wide, irregularly branched, contiguous to subimbricate; upper surface continuous, emaculate, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–6 µm. Apothecia adnate, 1–3 mm in diameter, spores poorly developed, 4–5 × 8–9 µm.

CHEMISTRY.—Diffractaic (major), 4-O-demethyldiffractaic, barbatic (trace), 4-O-demethylbarbatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 9.

DISTRIBUTION.—Lesotho.

COMMENTS.—This high elevation species is externally similar to *X. lesothoensis* Hale, which contains both diffractaic and salazinic acids. It is known only from low dolerite boulders in alpine meadows.

Xanthoparmelia consociata

Parexsella consociata Elix, 1981:352. [Type collection: 1.5 km SW of Glendale Crossing, A.C.T., Australia, Elix 3142 (MEL, holotype; CBG, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, appearing areolate at the center, 3–8 cm broad, dark yellowish green; lobes sublinear, 0.3–1 mm wide, short, crowded, imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 13i), 0.07–0.09 mm in diameter, 0.1–0.2 mm high, the tips syncrinate, black tipped, sparsely branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.3 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 µm. Apothecia adnate, 1–1.5 mm in diameter; spores 4–5 × 6–9 µm.

CHEMISTRY.—Salazinic (major), norstictic, consazinic (+), and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 3.

DISTRIBUTION.—Australia (NSW, ACT, NT).

COMMENTS.—This centrally areolate species is separated from *X. exillima* (norlorbaridione present) by the chemistry. It has been rarely collected in Australia.

Xanthoparmelia conspersa

Figure 33c

Xanthoparmelia conspersa (Acharius) Hale, 1974b:485. [Type collection: Sweden, s. c., H-Ach, lectotype (upper specimen); BM-Ach, isotype.]

Parmelia conspersa (Acharius) Acharius, 1803:205.

Parmelia conspersa c. corallina Kremzehubor, 1861:315. [Type collection: Mittenwalder Thale, Germany, Kremzehubor 31 (M, lectotype).]

Parmelia conspersa sps. digitulata Nylander, 1878:247. [Type collection: Vosges, Mougeot s.n. (H, Nyl. herb. no. 34770, lectotype).]

Parmelia conspersa var. s. isidata (Anzi) Stizenberger, 1882:307.

Imbricaria conspersa a. munda Hazslinszky, 1884:68. [Type collection: Hungary, Hazslinszky s.n. (BP, lectotype).]

Imbricaria conspersa b. coralloidea Hazslinszky, 1884:68. [Type collection: Hungary, Hazslinszky s.n. (BP, lectotype).]

Parmelia laxodes var. digitulata (Nylander) Olivier, 1894:58.

Parmelia conspersa var. digitulata f. intermedia Mereschkowsky, 1920a:487. [Type collection: Lugano, Italy, Mereschkowsky s.n. (G, lectotype).]

Parmelia conspersa f. dispersa Mereschkowsky, 1920b:486. [Type collection: Lugano-Savosa, Italy, Mereschkowsky 2 (G, lectotype).]

Parmelia conspersa var. s. isidata f. heterocysta Mereschkowsky, 1920a:487. [Type collection: Lugano-Massagno, Switzerland, Mereschkowsky in 1917 (G, lectotype; BM, isotype).]

Parmelia conspersa var. munda (Hazslinszky) Zahlebruckner, 1929:131.

Parmelia conspersa var. laciniata Erichsen, 1930:11. [Type collection: Bokuld, [Kreis Rendsburg-Eckernförde], Schleswig-Holstein, Germany, Erichsen s.n., 7 Aug 1916 (HBG, lectotype).]

Parmelia isidata f. laciniata Gyelnik, 1930b:31. [Type collection: Bonnaimont, France, s.c. (H, Nyl. herb. no. 34679, lectotype).]

Parmelia conspersa var. s. isidata Suza, 1930:26. [Type collection: Lake Balizovské Taty, Czechoslovakia, Suza s.n., Aug 1924 (PrM, lectotype).]

Parmelia isidata var. adventiva Gyelnik, 1931a:154. [Type collection: Trachysztiklin a Dødokó, Esztgrom, Dömös, Hungary, Tinkó 4369 (BP, lectotype).]

Parmelia bakonyensis Gyelnik, 1931a:154. [Type collection: Mt. Szőlőhegy, near Csék, Comit. Veszprém, Hungary, Gyelnik s.n. (BP, lectotype).]

Parmelia atlantica Gyelnik, 1931b:280. [Type collection: Haute Saône, Luxeuil, France, Bouy de Lesdain s.n. (BP, lectotype; designated type in Bouy de Lesdain herbarium destroyed). Not *Parmelia atlantica* Ach., 1803:50 (= *Tornabenia*).]

Parmelia ramiger Gyelnik, 1931b:281. [Type collection: Hacienda d'Angasmurca, Libertad, Peru, Sandsetr s.n. (BP, lectotype; designated type in Bouy de Lesdain herbarium destroyed).]

Parmelia conspersa var. vadaskertensis Gyelnik, 1931b:291. [Type collection: Vadaskert, Budapest, Hungary, Gyelnik s.n. (BP, lectotype).]

Parmelia pseudoramiger Gyelnik, 1931b:286. [Type collection: Herrin Run, Baltimore, Maryland, USA, Piti P-1 (BP, lectotype).]

Parmelia lojka Gyelnik, 1932a:216. [Type collection: Turjaremete, Comit. Ung, Hungary, Szatala s.n. (BP, lectotype; packet 34115; identical collection 22574 is an isotype).]

Parmelia bohemia Gyelnik, 1932a:218. [Type collection: Pribenice, Czechoslovakia, Servit s.n. (BP, lectotype).]

Parmelia isidata f. phololitica Gyelnik, 1932a:210. [Type collection: Rösselberg, Czechoslovakia, Klement s.n. (BP, lectotype).]
Description.—Thallus adnate to loosely adnate on rock, rarely on bark or lignon, often rather brittle, 4–12 cm broad, dull yellowish green; lobes subirregular, 1–3 mm wide, contiguous to imbricate, black rimmed with age, sometimes densely laciniate with age at the center; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia initially in part globous but cylindrical at maturity (Figure 14a), 0.06–0.2 mm in diameter, to 1 mm high, black tipped, simple or becoming densely coralloid branched; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, rather coarse, simple to furcate, 0.5–1 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 6–7 µm. Apothecia rather rare, subtibipate, the rim isidiate, 2–8 mm in diameter; spores 5–6 × 9–10 µm.

Chemistry.—Stickeic, constictic, cryptostictic, norstictic, conntorstitic, menegazzic (trace), hyposalazinic (±trace), and usnic acids (Culberson, Culborson, and Johnson, 1981).

Illustrations.—Anders, 1928, tab. 22, fig. 1; Jahns, 1980, fig. 415; Krog, Osthagen, and Tønsberg, 1980:203; Ozenda and Clauzade, 1970, fig. 510.

Distribution.—Canada, USA, Mexico, Costa Rica, Venezuela, Peru, Brazil, Chile, United Kingdom, Finland, Sweden, Norway, Belgium, France, Germany, Austria, Switzerland, Hungary, Czechoslovakia, Italy, Poland, Greece, Yugoslavia, Turkey, USSR, Japan.

Comments.—This is by far the best known and most widespread Xanthoparmelia species in Europe. As can be judged from the large number of described forms and varieties, it has a very wide range of variation in isidial branching and adnation. None of these taxa, as far as most lichenologists are concerned (e.g., Kušan, 1932), deserves taxonomic rank. Although most common in Europe and eastern North America (Hale, 1964), it is pantemperate except for its absence from Australasia and southern Africa. Closely related X. verrucigera in southern Europe and Africa lacks norstictic acid but has an unknown compound (lusitana) unknown occurring between sticic and norstictic acids on TLC plates.

No exact lectotypification of Lichen conspersula has been made previously. The Acharian collection consists of two specimens, the upper one densely isidiate, the lower one very sparsely isidiate. In 1964 (Hale, 1964:467), I indicated that Gyelnik (1930b:31) had lectotypified L. conspersula with the lower “nonisidiate” specimen. He called the upper densely isidiate one Parmelia isidiate (Anzi) Gyelnik, and the “nonisidiate” one P. conspersula. In any event Gyelnik incorrectly considered P. conspersula to be a nonisidiate species throughout his career. I have selected the upper specimen as the lectotype.

As Hillmann (1936) had found, the syntype of Imbricaria conspersa isidiate (Rabenhorst, Lichenes Europæi Exsiccati 65, seen in UPS) is mostly X. somloensis.

Several species are externally more or less identical with X. conspersa and may be considered as chemotypes: in Australia, where X. conspersa itself does not occur, this includes X. isidiliger (salazinic acid), X. neotincta (norstictic acid), and X. vicaria (barbaric acid); in North America X. piedmontensis (fumarprotocetraric acid); and in Europe and South Africa X. verrucigera (sticic acid and the lusitana unknown).

Xanthoparmelia conspersula

![Figure 33d](image)

Xanthoparmelia conspersula (Nylander) Hale, 1974b:486.

Parznelia conspersula Nylander in Crambie, 1876a:19 and 1876b:168. [Type collection: Table Mountain, Cape of Good Hope, South Africa, Eaton s.n. (BM, lectotype; H, Nyl. herb. no. 34673, isolectotype).]

Description.—Thallus very tightly adnate on rock, the center appearing areolate, 3–8 cm broad; dull yellow green or darkening with age; lobes sublinear, 0.3–0.6 mm wide, short, contiguous to subimbriicate; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, dark brown to black, moderately rhizinate, the rhizines black to brown, simple, 0.2–0.3 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 µm. Apothecia numerous, adnate, 1–2 mm in diameter; spores 5–9 × 10 µm.

Chemistry.—Salazinic, consalazinic (±), and usnic acids.

Distribution.—South Africa (Cape Province).
COMMENTS.—This rarely collected lichen in the Table Mountain area is the very tightly adnate morphotype in the series of species that includes *X. parvoincerta* and *X. incerta*, both adnate species in Australia and South Africa with broader lobes.

Xanthoparmelia constipata

Figure 33c

Parmelia constipata Kurokawa and Filson, 1975:37. [Type collection: Koomamore Vegetation Reserve, S.A., Australia, Seppelt s.n. (MEL, holotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on soil, rather fragile, 3–8 cm broad, yellowish green; lobes subirregular, 1.2–2.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical to irregularly inflated, 0.08–0.2 mm in diameter and up to 0.3 mm high, the tips epicorticate, erumpent and becoming pustulate, sparsely branched; medulla white; lower surface plane, pale to darker brown, moderately rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia lacking. Apothecia immature, substipitate about 1 mm in diameter; spores not found.

CHEMISTRY.—Norlabdaron, oxodin (±), scabrosin 4-acetate-4'-butyrate (±), scabrosin 4-acetate-4'-hexanoate (±), scabrosin 4,4'-dibutyrate (±), scabrosin 4,4'-diacetate (±), constipatic, protoconstipatic, and usnic acids, unidentified fatty acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 1: fig. 2.

DISTRIBUTION.—Australia (Qld, SA, NT, WA).

COMMENTS.—This is a very close relative of *X. seabrosa*, which normally lacks scabrosin and fatty acid derivatives and is not found on soil. It is, however, much more rarely collected, occurring in arid inland sites.

Xanthoparmelia conspicata

Figure 33f

Xanthoparmelia conspicata (Nylander) Hale, 1974b:486.

Parmelia conspicata Nylander in Cribbie, 1876a:19 and 1876b:168. [Type collection: Table Mountain, Cape Province, South Africa, Eaton s.n. (BM, lectotype; H, Nyl. herb. no. 34813, isotype).]

Parmelia conspicata var. conspicata (Nylander) Müller Argoviensis, 1883:48.

Imbricaria conspicata (Nylander) Jatta, 1902:470.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely on soil, firm, somewhat pulvinate, 5–10 cm broad, dull yellow green; lobes sublinear, 0.5–1.5 mm wide, elongate and irregularly constricted, black rimmed with brownish tips, divaricately branched, subascending; upper surface continuous to distinctly white-maculate in patches, shiny, isidia and soredia lacking; medulla white; lower surface plane, dark brown at the tips but soon black in the center, shiny, sparsely to moderately rhizinate, the rhizines thin and rather long, conspicuous, black, simple to sparsely fuscate, 0.5–1.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–8 µm. Apothecia substipitate, 2–8 mm in diameter; spores 6–7 × 10–11 µm.

CHEMISTRY.—Salazinic, consulazinic (±), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 10.

DISTRIBUTION.—South Africa (Cape Province), Australia (NSW).

COMMENTS.—This poorly understood species has only rarely been collected in southwestern Cape Province since its discovery over 100 years ago. It is much larger than *X. eradicata*, which was described at the same time from Table Mountain. Another South African lichen occurring in the same range, *X. rubromedulla*, has a stiff thallus, stronger maculate, and skyrin in the lower medulla.

Xanthoparmelia contrastata

Figure 34a

Xanthoparmelia contrastata Hale, 1987a:253. [Type collection: On west side of Hwy R43, 17.4 km N of N2, N of Floorshooge, elev. 350 m, Cape Province, South Africa, Grid 3419 AB, *Hale 78367*, 26 Oct 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 5–8 cm broad, light yellowish green; lobes subirregular to sublinear, 1–2 mm wide, dichotomously branched, imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane, shiny, black, sparsely to moderately rhizinate, the rhizines dark brown to black, simple, 0.3–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hydroporetocraric, 4-O-demethylnotatic, and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1987a, fig. 4.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The only related species with hypoprotocetraric acid, *X. tablinis*, has longer, separate to loosely imbricate lobes 1–2.5 mm wide and lacks skyrin. *Xanthoparmelia contrastata* is known only from the Fynbos of southwestern Cape Province.

Xanthoparmelia convexusa

Parmelia convexusa Müller Argoviensis, 1892:459. [Type collection: Socotra, Balfour s.n. (G, lectotype).]

Xanthoparmelia karamojae Krog and Swinscow, 1987:425. [Type collection: 8 km S of Angoremu, Pian County, Karamoja Dist., Uganda, *Swinscow 20331* (BM, holotype; O, US, isotype).]

DESCRIPTION.—Thallus tightly adnate on rock, rather dispersed, 2–8 cm broad, dull yellowish green; lobes rather short and subirregular, 0.5–1 mm wide, contiguous to imbricate, rugose with age, dying away at the center to give a centrifugate growth pattern; upper surface continuous, shiny at the tips but otherwise dull, soredia and isidia lacking;
Xanthoparmelia convoluta

Description. Thallus vagrant, free growing on soil, leathery, breaking apart into separate tubular lobes lacking dorsiventrality, twisted, 4-10 cm broad, dull yellowish green; lobes sublinear, 3-8 mm wide (10 mm unrolled), separate and little branched; upper surface continuous, emaculate, dull, reticulately cracked and rugulose with age, isidia and soredia lacking; medulla white; lower surface strongly convoluted and inrolled, pale to darker brown, sparsely rhizinate, the rhizines brown, delicate, the tips often whitening, unbranched, 0.2-0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 x 6-7 μm. Apothecia rare, subulate, 2-4 mm in diameter; spores 6 x 10-11 μm.

Chemistry. Salazinonic, consalazinonic, and usnic acids.

Illustration. Filson and Rogers, 1979, fig. 22b.

Distribution. Australia (SA, Vic).

Comments. This conspicuous soil lichen is confined to Australia. Its closest relative is the Australian X. australiensis, as noted by Krempelhuber (1881:337), and the American X. chlorochroa, which is a smaller plant with less strongly inrolled lobes. Gyalnik (1931a:156) coined the name P. subaustaliensis in the mistaken belief that P. convoluta Krempelhuber was aneated by P. conspersa f. convoluta Rabenhorst (1871), a nomen nudum identified with X. somloensis.

Xanthoparmelia cordinerana

Description. Thallus loosely adnate on rock, firm, 6-10 cm broad, yellowish green; lobes sublinear, 2-4 mm wide, separate to imbricate; upper surface continuous to weakly white-maculate, moderately isidiate, the isidia at first basally constricted, cylindrical to irregularly inflated at maturity (Figure 14c), 0.10-0.20 mm in diameter, to 0.5 mm high, the tips epicorticate, brownish, weakly erumpent, simple to sparsely branched; medulla white; lower surface plane, brown to dark brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.3-0.6 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 x 6 μm. Apothecia lacking.

Chemistry. Salazinonic, consalazinonic (+), and usnic acids.

Distribution. Japan, Korea.
Xanthoparmelia coriacea

Figure 34e

DESCRIPTION.—Thallus adnate on rock, firm and leathery, 6–10 cm broad, yellowish green; lobes subirregular, apically rounded, 2–4 mm wide, short, contiguous; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane, black, moderately rhizinate, the rhizines rather coarse, simple, black, 0.3–0.5 mm long. Pycnidia common; conidia bifusiform, 5–6 μm. Apothecia abundant, subtispitate, 2–8 mm in diameter, spores 5–8 × 10 μm.

CHEMISTRY.—Fatty "subdecipiens" unknowns 33 and 37 (major), constipatic (+trace), protoconstipatic (+trace), and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1987a, fig. 5.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—A member of the *X. subdecipiens* series, *X. coriacea* is distinguished by the leathery thallus. It is a rare species, occurring on basalt in the high Drakensberg escarpment. It represents the first reported occurrence of skyrin in a species with fatty acids and a black lower surface. Of the other fatty acid-containing species with a black lower surface, *X. aliphatica* has much broader, more membranous lobes (3–6 mm wide), *X. laciniata* has narrower, lobate, and *X. subnigra* has narrow sublinear lobes (1–2.5 mm wide).

Xanthoparmelia cotopaxiensis

DESCRIPTION.—Thallus tightly adnate on rocks and gravel, 3–7 cm broad, yellow green but darkening; lobes sublinearelongate, 0.5–1.0 mm wide, separate to imbricate, developing minute digitate lobulate 0.1–0.2 mm wide at the lobe tips; upper surface dull, shiny at the tips, sorediate, soralial submarginal to submarginal, orbicular, 0.3–0.8 mm in diameter, coalescing; medulla white; lower surface plane, brown to dark brown, blackening apically, moderately rhizinate, rhizines simple to sparsely branched, brown to black, 0.3–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, norstictic (trace), protocetraric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 9.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The thallus of this conspicuous lichen is large, leathery, and bright yellow. At first it is easily mistaken for an aberrant terricolous specimen of *X. colorata*, a very common saxicolous lichen in the karoo. The lower surface is clearly brown, however, not at all blackened, and the only medullary substance is salazinic acid (without norstictic acid). It is much larger, broader lobed, and more coriaceous than *X. taractica*, a soil-inhabiting or saxicolous lichen in Australasia and South and Central America.

Xanthoparmelia crassilobata

Xanthoparmelia crassilobata Hale, 1986b:570. [Type collection: 21 km NW of Sutherland on Tiwy R354, elev. 1500 m, Cape Province, South Africa, Grid 3220 BC, *Hale* 74053, 29 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock (difficult to remove intact) to nearly free growing on soil and loose pebbles, leathery and firm, 4–8 cm broad, bright yellowish green; lobes broadly sublinear, 3–7 mm wide, broadly convoluted, separate to imbricate; upper surface continuous, emaculate, shiny, rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale to darker brown, rugose, moderately rhizinate, the rhizines pale brown, simple to furcate, 1–2 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subtispitate, 5–14 mm in diameter, the rim rolled inward; spores 6–7 × 9–11 μm.

CHEMISTRY.—Salazinic, consalazinic (+), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 9.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The thallus of this conspicuous lichen is large, leathery, and bright yellow. At first it is easily mistaken for an aberrant terricolous specimen of *X. colorata*, a very common saxicolous lichen in the karoo. The lower surface is clearly brown, however, not at all blackened, and the only medullary substance is salazinic acid (without norstictic acid). It is much larger, broader lobed, and more coriaceous than *X. taractica*, a soil-inhabiting or saxicolous lichen in Australasia and South and Central America.

Xanthoparmelia cravenii

Xanthoparmelia cravenii Elix and Johnston in Elix, Johnston, and Armstrong, 1986:223. [Type collection: Rodgers Pass, 48 km W of Stuart Highway along road to Kings Canyon, N.T., Australia, *Elix* 111118 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 3–8 cm broad, light yellowish green; lobes sublinear, 0.8–1 mm wide, contiguous and separate at the margin but becoming crowded and bullate at the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely rhizinate, the rhizines pale brown, simple, 0.3–0.6 mm long. Pycnidia poorly developed. Conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subtispitate, 1–4 mm in diameter; spores 5–6 × 8–10 μm.
CHEMISTRY.—Scabrosin 4,4'-dibutyrate, scabrosin 4-acetate-4'-butyrate, scabrosin 4-acetate-4'-hexanoate and scabrosin 4,4'-diacetate, constipistic (±), protoconstipatic (±), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 12.

DISTRIBUTION.—Australia (NSW, SA, NT, WA).

COMMENTS.—This is one of the commonest species in arid central Australia. Chemically related X. bungendorensis is adnate to loosely adnate with lobes 0.9–3 mm wide and lacks accessory fatty acids.

Xanthoparmelia cumberlandia

Xanthoparmelia cumberlandia (Gyelnik) Hale, 1974b:487.

Parmelia subconspersa var. cumberlandia Gyelnik, 1934c:164. [Type collection: Cumberland, Maine, Chamberlain s.n. (BP, lectotype; isotype designated in Bouly de Lesdain herbarium destroyed).

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 6–12 cm broad, yellowish brown; lobes subirregular to sublinear, 1–2 mm wide, contiguous to imbricate and often becoming densely laciniate at the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown or darkening, moderately isidiate, the rhizines pale brown, simple, 0.3–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia numerous, substipitate, 2–10 mm in diameter; spores 4.5–9×10 μm.

CHEMISTRY.—Stictic, constistictic, norstictic, and usnic acids.

DISTRIBUTION.—North America, Mexico, Dominican Republic, Venezuela, Brazil, Uruguay, South Africa (Cape Province).

COMMENTS.—This is the nonisidiate morph of X. plittii. Both are very common in northeastern USA, where they were first described, and range southward into tropical America. Gyelnik (1934c:164) described the lower surface as "subtus niger" but the type is unmistakably brown.

Xanthoparmelia cylindriloba

DESCRIPTION.—Thallus free growing on pebbles and soil, soft, pulvinate, 3–10 cm broad, dark yellowish green and blackening with age; lobes linear-elongate, almost completely terete, 0.5–1.5 mm wide, brown or mottled brown at the tips; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, mottled brown or black, rugulose, very sparsely rhizinate, the rhizines black, coarse, 0.2–0.7 mm long, concentrated in small patches. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, norstictic (trace), and usnic acids.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 3.

DISTRIBUTION.—Kenya.

COMMENTS.—Unique terete lobes with very little dorsiven- trality distinguish this high elevation species. The medulla is composed of very loosely packed hyphae. A related species, X. kiboensis, lacks terete lobes and contains norstictic acid as the major metabolite. Another species from Kenya, X. salikiboensis, also has salazinic acid but lacks terete lobes.

Xanthoparmelia darlingensis

DESCRIPTION.—Thallus very tightly adnate on rock, 2–3 cm broad, yellowish green but blackening with age at the center; lobes sublinear, 0.3–0.8 mm wide, sparingly dichotho- mously branched, irregularly constricted, black-rimmed, separate to contiguous; upper surface continuous, emaculate, becoming transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, densely rhizinate, the rhizines black, simple, robust, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic (major), barbatic (major), 4-O-demethylbarbatic (trace), constistictic, norstictic, cryptostictic (trace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 5.

DISTRIBUTION.—Australia (WA).

COMMENTS.—Known only from the type collection, this tightly adnate lichen appears to be a hybrid between X. xanthomelaena (stictic acid) and X. louisia (barbatic acid). A South African species with the same chemistry, X. umtamvuna, is also tightly adnate but has globose isidia and a pale brown lower surface.

Xanthoparmelia dayiana

Parmelia dayiana Elix and Armstrong, 1983:466. [Type collection: Kalgoorlie, W.A., Australia, Day s.n. in vi.1982 (MEL, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, rather fragile, 2–4 cm broad, dark yellowish green; lobes subirregular to sublinear, 0.5–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia short, globose (Figure 14d), 0.1–0.3 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, hollow and erumpent apically, sometimes subso soredate, unbranched; medulla white; lower surface plane, pale brown,
moderately rhizinate, the rhizines pale brown, simple, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Fumarprotocetraric, succinylprotocetraric, protocetraric (trace), and usnic acids.

ILLSUSTRATION.—Elix and Armstrong, 1983, fig. 2.

DISTRIBUTION.—Australia (NT, WA).

COMMENTS.—This rare Australian desert species is the only crustose-erumpent isidiate one with fumarprotocetraric acid. It is morphologically close to *X. praegnaus*, which contains salazinic acid.

Xanthoparmelia denudata

Figure 35c

Xanthoparmelia denudata Hale, 1986b:570. [Type collection: 1 km S of Nuwerus on Hwy R363, east of N7, elev. ca. 500 m, Cape Province, South Africa, Grid 3118 AB, Hale 72041, 26 Jan 1986 (US, holotype; LD, PRE, isotypes)].

DESCRIPTION.—Thallus loosely adnate on rocks, forming continuous mats 5–8 cm broad or discrete, nearly umbilicate colonies 2–4 cm broad, coalescing into mats up to 15 cm broad, fragile, dark yellowish green; lobes sublinear, 0.6–1.3 mm wide, separate, ascending at the tips; upper surface distinctly white-maculate, shiny, transversely cracked with age, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane, rugose, brown but eroding toward the center to expose the ochraceous medulla, black at the lobe tips, sparsely rhizinate, the rhizines brown or blackening, coarse, simple, up to 1 mm long. Pycnidia poorly developed; conidia not found. Apothecia rarely developed, substipitate, 3–6 mm in diameter; spores 6–7 × 8–10 µm.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids. **ILLUSTRATION.**—Hale, 1986b, fig. 10.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The pale ochraceous orange lower surface is easily recognizable in the field. The lower cortex erodes away with age to reveal the heavily pigmented lower medulla. The lobe configuration and nearly bare, rugose lower surface resembles *X. subcolorata*, which has a stronger tendency to form umbilicate thalli, broader lobes (1.5–4 mm wide) and produces protocetraric acid. *Xanthoparmelia hyporhyla*, also restricted to Namaqualand, has salazinic acid and a similar rugose lower surface eroding with age but lacks skyrin and maculae. Also common in Namaqualand, *X. springbokensis* differs in having shorter, subirregular lobes and closer adnation.

Xanthoparmelia desertorum

Figure 35d

DESCRIPTION.—Thallus vagrant, free growing on soil, leathery, 2–5 cm broad, breaking apart into separate, contorted lobes, dull yellowish green; lobes sublinear, 2–8 mm wide (to 10 mm when unrolled), little branched; upper surface continuous to weakly white-maculate, dull, strongly rugose with age, isidia and soredia lacking; medulla white; lower surface strongly convoluted and inrolled, light brown, lacking a marginal rim when unrolled, moderately rhizinate, the rhizines papillose to short and fine, simple, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids. **ILLUSTRATION.**—Gyelnik, 1901b, pl. 3 (as *Parmelia conspersa ssp. molliscula var. vagans f. desertorum*).

DISTRIBUTION.—USSR, Mongolia.

COMMENTS.—This unusual vagrant lichen is related to *X. camtschadalis*, which has smaller, convoluted rather than inrolled lobes (see further discussion above under *X. camtschadalis*). I have seen only a few specimens from the USSR.

Xanthoparmelia diacida

Figure 35e

DESCRIPTION.—Thallus adnate to somewhat loosely attached on rock, 5–8 cm broad, bright yellow green; lobes subirregular, apically round, 3–7 mm wide, imbricate and short lobulate with age; upper surface continuous, emaculate, shiny or rarely white pruinose at the tips, isidia and soredia lacking; upper medulla white, lower medulla often dull reddish; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia rare; conidia bifusiform, 0.5×4–5 µm. Apothecia adnate, 4–8 mm in diameter; spores 5–7 × 8–12 µm.

CHEMISTRY.—Psoromic, protocetraric, caperatic (±), and usnic acids, "schencikiana" pigment (±). **ILLUSTRATION.**—Hale, 1986b, fig. 11.

DISTRIBUTION.—South Africa.

COMMENTS.—This rather rare member of the *X. schenckiana* group is confined to the Cave and Molteno sandstone formations in eastern Cape Province. Of the 10 specimens examined, 8 have the schencikiana pigment and half of these produce caperatic acid. Two specimens lacked the pigment. Another nonisidiate species with psoromic acid, *X. psoromatica,*
also occurs in South Africa. *Xanthoparmelia schenckiana*, which contains protocetraric and caperatic acids and the same unidentified dull rusty colored pigment (forming a pale yellow streak near norstictic acid on TLC plates and reacting UV+ yellow fluorescent), is superficially similar but lacks psoromic acid and is usually heavily pruinose. See further discussions under *X. schenckiana*.

Xanthoparmelia diadeta

Figure 35f

Xanthoparmelia diadeta (Hale) Hale, 1974b:487.

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, 2–5 cm broad, dull yellowish green, darkening at the center; lobes subirregular to sublinear, 0.7–1.3 mm wide, contiguous to imbricate; upper surface continuous, maculate, shiny, densely isidiate, the isidia cylindrical (Figure 14e), 0.06–0.10 mm in diameter, 0.2–0.3 mm high, the tips syncorticate, darkening, unbranched; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.1–0.3 mm long. Pycnidia lacking. Apothecia rarely developed, substipitate, 1–2 mm in diameter; spores 5 × 8–9 µm.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids.

ILLUSTRATION.—Hale, 1971a, fig. 1c.

DISTRIBUTION.—Kenya, Uganda, South Africa (Transvaal, Natal, Cape Province).

COMMENTS.—This is the tightly adnate member of the *X. australasica* series. It is very common on the eastern slopes of the Drakensbergs.

Xanthoparmelia dichotoma

Figure 36a

Xanthoparmelia dichotoma (Müller Argoviensis) Hale, 1974b:487.

Parmelia dichotoma Müller Argoviensis, 1886:257. [Type collection: Braidwood Dist., Australia, Bauerlen 204 (G, lectotype; BM, FH, FH-Tayl, M, islectotypes).]

DESCRIPTION.—Thallus loosely adnate to subascending on rocks, pulvinate, firm, 4–10 cm broad, dull yellowish green; lobes sublinear, 1.5–3 mm wide, elongate, irregularly dichotomously branched, loosely imbricate and subascendant, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to weakly convoluted, dark brown to mostly black, rhizines sparse, brown to black, 0.5–1 mm long. Pycnidia rarely developed; conidia not found. Apothecia rare, substipitate, 2–5 mm in diameter; spores 6 × 8–9 µm.

CHEMISTRY.—Norlobaridone, loxodin, and usnic acid.

ILLUSTRATIONS.—Kurokawa, 1969, pl. 1: fig. 1; Galloway (1980), fig. 5b.

DISTRIBUTION.—New Zealand, Australia (NSW, ACT, Vic, Tas, WA).

COMMENTS.—This is one of the first lichens discovered in Australasia. It is very close to *X. furcata*, which has a brown lower surface. A chemotype, *X. rupestris*, contains the scabrosin derivatives.

Xanthoparmelia dierythra

Figure 36c

Xanthoparmelia dierythra (Hale) Hale, 1974b:487.

Parmelia dierythra Hale, 1964:470. [Type collection: Mill Bluff Roadside Park, Juneau Co., Wisconsin, USA, Hale 23622 (US, holotype; DUKE, UPS, WIS, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 4–8 cm broad, light yellowish green; lobes subirregular, 1.5–4 cm wide, apically rotund, contiguous to imbricate; upper surface continuous or at times very weakly white-maculate, shiny, weakly to strongly rugose with age, isidia and soredia lacking; medulla white with scattered deep purple inclusions; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, rather coarse, 0.5–1.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 µm. Apothecia commonly developed, substipitate, 2–5 mm in diameter; spores 6 × 9–10 µm.

CHEMISTRY.—Protocetraric and usnic acids, anthaquiquine pigment (identical with one (H2) in *X. endomiltoides*).

ILLUSTRATION.—Hale, 1971a, fig. 1d.

DISTRIBUTION.—South Africa (OFS, Cape Province), Lesotho.

COMMENTS.—The wine-colored to deep purple inclusions in the medulla are only visible when the thallus is cut open. This widespread but not commonly collected lichen occurs both in very arid karoo with tightly adnate *X. applicata* and *X. worcesteri* and in moist high-elevation localities in Lesotho.
or sparsely branched, 0.1–0.5 mm long. Pycnidia lacking. Apothecia rare, substipitate, 1–3 mm in diameter; spores 4–5 × 9–10 μm.

CHEMISTRY.—Norstictic, connorstictic, and usnic acids (det. C. Culberson).

ILLUSTRATION.—Hale, 1964, fig. 2.

DISTRIBUTION.—North-central USA.

COMMENTS.—This rather rare species is differentiated from *X. plitii* by lack of stictic acid. *X. maricopensis* from the western USA contains hyposalazinic acid in addition to norstictic acid and is more adnate.

Xanthoparmelia diffractaica

FIGURE 36d

Xanthoparmelia diffractaica Hale, 1983a:254. [Type collection: Naudesnek, dev. 2180 m, Cape Province, South Africa, Grid 3028 CB, Hale 76885, 9 Oct 1986 (US, holotype: PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, leathery, 6–8 cm broad, dark yellowish green; lobes subirregular, 2.5–3.5 mm wide, apically round, contiguous to subimbri cate, black rimmed; upper surface continuous, emaculate, shiny, irregularly cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, moderately to densely rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia abundantly developed, adnate to substipitate, 2–7 mm in diameter; spores 5–6 × 9–11 μm.

CHEMISTRY.—Salazinic (major), diffractaic (minor), barbatic (trace), 4-O-demethylbarbatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 6.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Another high elevation species with this chemistry, *X. lesothoensis*, from the nearby high Drakensberg escarpment in Lesotho, is smaller and more closely adnate with narrow lobes 1–2 mm wide. It also has higher concentrations of diffractaic acid.

Xanthoparmelia digitiformis

FIGURE 36e

Xanthoparmelia digitiformis (Elix and Armstrong) Filson, 1984:205.

Parmelia digitiformis Elix and Armstrong, 1983:470. [Type collection: Boonoomba Rocks, 11 km SW of Tharwa, A.C.T., Australia, Elix 6173 (MEL, holotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 10–20 cm broad, dark yellowish green; lobes sublinear to subirregular, 1.5–3 mm wide, imbricate, becoming densely laciniate at the center, the secondary lobes digitately divided, 0.4–0.8 mm wide, subascending, black-rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown, rugulose toward the tips, sparsely to moderately rhizinate, the rhizines pale brown, simple to furcate, 0.3–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–6 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic (major), consalazinic, norstictic (trace), protocetraric (trace), and usnic acids.

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 3.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This member of the *X. taractica* group resembles some forms of *X. elisii*, which contains predominantly norstictic acid. It is known only in Australasia.

Xanthoparmelia dissensa

FIGURE 36f

Xanthoparmelia dissensa (Nash) Hale, 1974b:487.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather firm, 4–8 cm broad, yellowish green but darkening with age; lobes subirregular, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, strongly rugose with age; isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, coarse, 0.5–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Hypoprotocetraric and usnic acids.

ILLUSTRATION.—Nash, 1973, fig. 1.

DISTRIBUTION.—Southwestern USA.

COMMENTS.—This rare lichen is one of only two species in North America with hypoprotocetraric acid, the other being *X. weberi*. The South African *X. domokosii* is a smaller more closely adnate species lacking any rugosity. *Xanthoparmelia tablensis*, also from South Africa, is loosely adnate and has sublinear lobes.

Xanthoparmelia dissitifolia

FIGURE 36g

Xanthoparmelia dissitifolia Kurokawa ex Elix and Johnston in Elix, Johnston, and Armstrong, 1986:228. [Type collection: 18 mi S of Collic, W.A., Australia, Kurokawa 6642 (TNS, holotype: MEL, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, 2–5 cm broad, the center appearing areolate, yellow green but darkening with age; lobes sublinear, 0.2–0.5 mm wide dichotomously divided, contiguous to subimbri cate, black rimmed; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, moderately rhizinate, the
Xanthoparmelia domokosii

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 13.

Distribution.—Australia (ACT, Tas, WA).

Comments.—This typically centrally areolate species is known from five widely dispersed localities in Australia. *Xanthoparmelia olifantensis* from South Africa is quite similar but contains norstictic and salazinic acids in nearly equal concentration and has very fine rhizines.

Xanthoparmelia dubitata

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 14.

Distribution.—Australia (SA, WA).

Comments.—Morphologically, *X. donneri* is not unlike *X. dissitifolia* and other centrally areolate Australian species, but the combination of chemicals is unique for this group.

Xanthoparmelia duplicata

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 15.

Distribution.—Australia (NSW, Vic, SA, NT).

Comments.—This widespread but rarely collected Australian species is related morphologically to the *X. xanthomelaena* group. It may also be considered to be a very tightly areolate relative of *X. filarskyana.*

Description.—Thallus very tightly areolate on rock, appearing areolate at the center, 2–7 cm broad, dull yellowish green; lobes sublinear, 0.3–0.7 mm wide, crowded, short, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked and areolate-bullate with age, isidial and soredial lacking; medulla white; lower surface plane, brown, sparsely rhizinate, the rhizines pale brown, delicate, simple, about 0.2 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5 μm. Apothecia 1–4 mm in diameter; spores 4–6 × 7–9 μm.

Chemistry.—Barbatic, norstictic, connorstictic, hyposalazinic (trace), and usnic acids.

Description.—Thallus loosely attached on pebbles to nearly free growing on soil, 3–5 cm broad but coalescing into larger colonies, yellowish green; lobes sublinear, 1.5–4 mm wide, separate to imbricate, more or less subascending and transversely cracked with age, isidial and soredial lacking; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.1–0.2 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia adnate, 0.5–1 mm in diameter; spores 5–6 × 7–11 μm.

Chemistry.—Norlobaridone, loxodin (±trace), and usnic acid.

Description.—Thallus tightly adnate to adnate on rock, sometimes appearing areolate in the center, 3–8 cm broad, light yellowish green; lobes subirregular to sublinear, 0.6–2 mm wide, contiguous to subimbricate; upper surface continuous, emaculate, shiny to dull, transversely cracked and rugose with age, isidial and soredial lacking; medulla white; lower surface plane, black, sparingly to moderately rhizinate, the rhizines black, simple, 0.1–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, adnate, 1–1.5 mm in diameter; spores 6 × 9 μm.

Chemistry.—Hypoprotocetraric, 4-O-demethylnotatic, notatic (trace), hypostictic (±trace), hyposalazinic (±trace), and usnic acids.

Distribution.—South Africa (Cape Province).

Comments.—Lobe width is quite variable in this very common South African lichen. It occurs in the Little Karoo and moister southern parts of the Great Karoo. It is externally similar (except for broader, more irregular lobes) to *X. worcesteri,* another equally common karoo lichen, which contains lecanoric acid. Some specimens have been misidentified as *Parmelia perspensa* Stizenberger, a subcrustose species in Karoowie (Hale, 1989a).

Xanthoparmelia donneri

Xanthoparmelia donneri Elix and Johnston in Elix, Johnston, and Armstrong, 1986:231. [Type collection: Section B, SE end of Marble Range, SW corner, Eyre Peninsula, S.A., Australia, Donner 2086 (AD, holotype).]

Description.—Thallus very tightly adnate on rock, 0.5–2 cm broad, yellowish green but darkening at the center; lobes sublinear, 0.2–0.5 mm wide, dichotomously branched, separate to contiguous; upper surface continuous, emaculate, shiny, transversely cracked with age, isidial and soredial lacking; medulla white; lower surface, black, moderately rhizinate, the rhizines black, simple, 0.1–0.2 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia adnate, 0.5–1 mm in diameter; spores 5–6 × 7–11 μm.

Chemistry.—Norlobaridone, loxodin (±trace), and usnic acid.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 15.

Distribution.—Australia (NSW, Vic, SA, NT).

Comments.—This widespread but rarely collected Australian species is related morphologically to the *X. xanthomelaena* group. It may also be considered to be a very tightly areolate relative of *X. filarskyana.*

Xanthoparmelia duplicata

Xanthoparmelia duplicata Hale, 1986b:572. [Type collection: 19.5 km NNW of Vanrhynsdorp on east side of Hwy N7, elev. 200 m, Cape Province, South Africa, Grid 3118 BC, Hale 73102, 26 Jan 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus loosely attached on pebbles to nearly free growing on soil, 3–5 cm broad but coalescing into larger colonies, yellowish green; lobes sublinear, 1.5–4 mm wide, separate to imbricate, more or less subascending and...
weakly convoluted; upper surface weakly to distinctly white-maculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla ochre in part; lower surface plane, brown with ochre spots, sparsely rhizinate, the rhizines brown, 1–2 mm long, coarse, simple to furcate with splayed tips. Pycnidia immature; conidia not found. Apothecia well developed, substipitate, 4–8 mm in diameter; spores 6–7 × 9–12 μm.

CHEMISTRY.—Protocetraric (major), 4-O-demethylidiffracta-tic (major), 4-O-demethylbarbaric (trace), squamatic (trace), and usnic acids, skyrin (det. J.A. Elix).

ILLUSTRATION.—Hale, 1986b, fig. 12.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This unique soil-inhabiting lichen is alone among the convoluted species in having this series of acids and the pigment skyrin. It occurs only in the knersvlakte region ofNamaqualand, growing on quartzite pebbles.

Xanthoparmelia durietzii

Figure 37d

Xanthoparmelia durietzii Hale, 1987b:322. [Type collection: Kansu, China, Potanin s.n., 10 Apr 1885 (UPS, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely adnate on soil or mossy humus, 6–8 cm broad but brittle and breaking apart when collected, dull yellowish green; lobes sublinear, 2–3 mm wide, relatively short and irregularly dichotomously branched, contiguous to imbricate, becoming apically laciniate with age toward the center, the laciniae 0.3–0.5 mm wide, digitately branching, apressed to suberect and terete at maturity; upper surface white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, light brown to brown, moderately to densely rhizinate, the rhizines brown, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 5–6 μm long. Apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Hale, 1987b.

DISTRIBUTION.—China.

COMMENTS.—This obvious member of the X. somloensis group is easily distinguished by the well developed terete laciniae. It is known only from China.

Xanthoparmelia dysprosa

Figure 37e

Xanthoparmelia dysprosa Brusse and Knox in Knox and Brusse, 1983:148. [Type collection: Platekloof, Vlottenberg, Cape Province, South Africa, Grid 3318 AD, Garzide 5065a (BOL, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, rather fragile and congested, 4–8 cm broad, dull yellowish green; lobes sublinear to linear, 0.5–1.5 mm wide, dichotomously divided, the tips subascending, black rimmed, separate to subimbricately, upper surface strongly effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, smooth to rugulose, very sparsely rhizinate, the rhizines black, coarse, simple, 0.3–1 mm long. Pycnidia common; conidia not found. Apothecia substipitate, 1–4 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Evernic (major), lecanoric (trace), and usnic acids.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 4.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This is another chemical variant in the X. hypoleia group. While evernic acid was reported in the type description, the vast bulk of the type collection contains lobe fragments with hypoprotocetraric acid and can be identified as X. hypoprotocetrarica or unidentifiable scraps. One fragment 5 mm long contains evernic acid (det. J. Johnston). I was able to make a second much larger pure collection with evernic acid near Clanwilliam in southern Namaqualand but was unable to recollect it at the type locality near Stellenbosch.

Xanthoparmelia effigurata

Figure 37f

Xanthoparmelia effigurata Hale, 1986b:573. [Type collection: Meiringspoort, 18 km N of De Rust on east side of Hwy R29, elev. 690 m, Cape Province, South Africa, Grid 3322 BC, Hale 73016, 1 Feb 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm and leathery, pale yellowish green, 6–12 cm broad; lobes sublinear, 1.5–2.5 mm wide, dichotomously branched; upper surface strongly effigurate-maculate, the maculae irregularly elongate, sometimes coalescing, shiny, becoming transversely cracked, somewhat convex with age, isidia and soredia lacking; medulla white; lower surface plane, black with a brown zone at the tips, sparsely to moderately rhizinate, the rhizines coarse, brown to black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia common, substipitate, the rim upturned, 3–7 mm in diameter; spores 6–7 × 9–11 μm.

CHEMISTRY.—Salazinic, norstictic (trace), and usnic acids, chalybæiczans unknown.

ILLUSTRATION.—Hale, 1986b, fig. 13.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This lichen is distantly related to the X. hypoleia group by reason of the effigurate maculae. It is, however, not as loosely adnate, is almost always collected attached to the rock substrate, and has more leathery, separate somewhat convex lobes. *Xanthoparmelia namakwa*, which has a pale brown lower surface, differs chemically in usually producing salazinic and norstictic acids in equal concentration and only rarely containing the chalybæiczans unknown. Both
species are common in Namaqualand and the southern end of the Great Karoo in Cape Province.

Xanthoparmelia eiliifl

P. dahlii Kurokawa, 1982:36. [Type collection: Sturt Highway about 7 mi E of Mildura, NSW, Australia, Dahl s.n. (O, holotype; TNS, isotype). Not *P. dahlii* (Hale) A. Singh, 1980:59 (= *Relicina dahlii* (Hale) Elix and Verdon.)]

DESCRIPTION.—Thallus loosely adnate to nearly free-growing on soil, firm, 3–7 cm broad, light yellowish green; lobes sublinear, 1–2.5 mm wide, weakly convoluted, secondary laciniae developing at the center with age and becoming convoluted; upper surface continuous, emaculate, shiny but becoming dull with age, isidia and soredia lacking; medulla white; lower surface plane, brown to dark brown, moderately rhizinate, the rhizines pale, fine, simple, 0.4–0.8 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone, loxodin, and usnic acid.

ILLUSTRATION.—Kurokawa, 1982, fig. 2 (as *P. dahlii*).

DISTRIBUTION.—Australia (Qld, NSW, SA, WA).

COMMENTS.—Near *X. terrestris* in external appearance, this rare terricolous lichen is distinguished by the presence of norlobaridone.

Both species occur on sandy lateritic soils, especially in mallee shrubland.

Xanthoparmelia elaeodes

Figure 38a

P. elaeodes Elix, 1981:354. [Type collection: 13 km S of Countegany along Nimmitabel Road, NSW, Australia, Elix 1980 (MEL, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, fragile, 4–7 cm broad, dull yellowish green; lobes subirregular, 0.8–1.5 mm wide, short, sometimes tangentially cracked, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately to densely rhizinate, the rhizines black, coarse, simple, 0.3–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subapplanate, 1–3.5 mm in diameter; spores 5 × 8 μm.

CHEMISTRY.—Norlobaridone, loxodin and usnic acid.

ILLUSTRATION.—Elix, 1981, fig. 4.

DISTRIBUTION.—Australia (ACT, NSW, SA).

COMMENTS.—*X. elaeodes* appears to be the black lower surface morphotype of *X. filarszkyana*, but it is much less common.

Xanthoparmelia elixii

Xanthoparmelia elixii Filson, 1984:203. [Type collection: 3 km N of Carey Gally, Mt. Lofty Range, S.A., Australia, Elix 2290 (MEL, holotype; CBG, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 4–16 cm broad, dark yellowish green; lobes sublinear, 0.7–2 mm wide, contiguous to imbricate, with short subascending laciniae toward the center, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale or darker brown, sparsely rhizinate, the rhizines pale brown, simple, 0.5–2 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia common, subapplanate, 3–10 mm in diameter; spores 6–7 × 9–10 μm.

CHEMISTRY.—Norstictic, connorstictic, salazinic acid (±trace), constipatic (±trace). Protoconstipatic (±trace), and usnic acids.

ILLUSTRATION.—Filson, 1984, fig. 1.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This is another of the numerous Australian species with norstictic acid, characterized by the loosely adnate thallus and the pale brown, sparsely rhizinate lower surface. It occurs widely in southern Australia.

Xanthoparmelia endochromatica

Figure 38b

Xanthoparmelia endochromatica Hale, 1986b:574. [Type collection: along trail from Platekip Gorge to Woodhead Reservoir, Table Mountain Nature Reserve, elev. 950 m, Cape Province, South Africa, Grid 3318 CD. Hale 72081, 23 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus tightly adnate on rock, firm, 1–2 cm broad, yellowish green but blackening with age at the center; lobes sublinear at the margins, strongly black-rimmed, 0.3–0.9 mm wide, contiguous, crowded and becoming opuntioid-constricted at the center, upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla uniformly dull rusty orange-red; lower surface plane, black, shiny, sparsely rhizinate, the rhizines coarse, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Schenckian pigment, secalonic acid derivatives, usnic acid, and faint unidentified spots.

ILLUSTRATION.—Hale, 1986b, fig. 14.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This brilliantly pigmented lichen, known from only two collections on Table Mountain, is characterized by both chemistry and morphology. It is, with *X. verecunda*, the only *Xanthoparmelia* with the schenckian pigment as the main component. The strongly black-rimmed lobes are unusual in that they become opuntioid-constricted and appear quite
unlike any other species in the genus. *Xanthoparmelia verecunda* is a more fragile lichen with narrow dissected lobes. Although I originally reported gyrophoric acid, the spots on the TLC plates cannot be positively identified.

Xanthoparmelia endomiltoides

Figure 38d

Xanthoparmelia endomiltoides (Nylander) Hale, 1974b:487.

Parmelia endomiltoides Nylander in Crambie, 1876a:19 and 1876b:168. [Type collection: Cape of Good Hope, South Africa, Eaton s.n. (BM, lectotype; II, Nyl. herb. no. 34793, isolectotype).]

Description.—Thallus adnate on rock, rather fragile, 4–6 cm broad, darkish yellow green; lobes subirregular, 0.8–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rather fragile and breaking open to reveal the purple medulla, rugose with age, soreidia and isidia lacking; medulla uniformly deep wine purple; lower surface plane, pale brown, moderately rhizinate, the rhizines pale, simple to sparsely furcate, 0.4–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia common, substipitate, 2–5 mm in diameter; spores 6–7 × 8–11 μm.

Chemistry.—Salazinic, consalazinic, and usnic acids, 3–4 unidentified anthraquinone pigments.

Distribution.—South Africa (Cape Province).

Comments.—The brilliant, deep wine purple-red pigments are distributed throughout the medulla and exposed as the fragile cortex is abraded off. This unusual species is locally abundant in southwestern Cape Province, often on shaded, moist rocks and occurring only as separate small orbicular thalli at a site.

Xanthoparmelia enteroxantha

Figure 38e

Xanthoparmelia enteroxantha Hale, 1986b:574. [Type collection: 22 km NW of Kango Caves, elev. ca 1000 m, Cape Province, South Africa, Grid 3322 AC, *Hale* 74044, 31 Jan 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus adnate on rock or on soil over rocks, rather stiff and fragile, 6–10 cm broad, greenish yellow; lobes sublinear, elongate, 1.5–2 mm wide, dichotomously branched, separate to imbricate; upper surface clearly white-maculate, shiny, isidia and soreidia lacking; medulla typically uniformly salmon orange or in part white; lower surface plane, dark brown or blackening with age, sparsely to moderately rhizinate, the rhizines brown to black, rather coarse, 0.5–1 mm long, simple to furcate. Pycnidia and apothecia lacking.

Chemistry.—Salazinic and usnic acids, skyrinol, oxyskyrin, skyrin (trace), zeorin, and a fourth unidentified anthraquinone (det. C. Culberson and A. Johnson).

Illustration.—Hale, 1986b, fig. 15.

Distribution.—South Africa (Cape Province).

Comments.—No other species of *Xanthoparmelia*, excepting *X. endomiltoides*, *X. endochromatica*, *X. ianthina*, *X. rubropustulata*, and *X. verucunda* have a completely pigmented medulla. This species is the only one in the genus to produce zeorin. It is known from several mountain passes in extreme southwestern Cape Province.
DESCRIPTION.—Thallus loosely attached on pebbles to nearly free growing over soil and pebbles, firm, covering extensive areas but breaking up into individual colonies 3–5 cm broad, light yellowish green; lobes sublinear, 1.5–5 mm wide, weakly convoluted, elongate and little branched; upper surface continuous, emaculate, shiny, rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, densely rhizinate, the rhizines pale brown, 0.5–1.5 mm long, simple to furcate. Pycnidia common; conidia bicusiform, 0.5 × 6–7 μm. Apothecia sparsely developed, adnate, 2–4 mm in diameter; spores 5–6 × 9–11 μm.

CHEMISTRY.—Fatty “subdeciptiens” unknowns 33 and 37 (major), constipatic (± trace), protoconstipatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 16.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This soil-inhabiting lichen, endemic to the knersvlakte region of Namaqualand, is related to the Australian X. condaminensis but differs in being more distinctly convoluted and in having a different fatty acid profile.

Xanthoparmelia equalis

Figure 39a

Xanthoparmelia equalis Hale, 1986b:576. [Type collection: Laguneberg Mountains, NE of Mile 72, Distr. Omaruru, SWA/Namibia, Grid 2114 CC, Hale 75100, 8 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to tightly adnate on rocks, soft, 5–8 cm broad, yellowish green to grayish white; lobes sublinear, 0.5–1.1 mm wide, rather crowded and imbricate to areolate-bullate at the center; upper surface continuous, emaculate, shiny to dull and white-pruinose, faintly reulateiculate-grayish on the tips, becoming transversely cracked, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, 0.3–0.5 mm long, simple. Pycnidia and apothecia lacking.

CHEMISTRY.—Evernic, lecanoric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 17.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This common Namibian endemic is externally close to X. lagunebergenis (protocetraric acid present) and X. serusiaxii (lecanoric acid present). There is great variation in the development of pruina such that specimens may vary from light yellow-green to whitish greyish gray. The number of the holotype in the original publication (75101) was cited incorrectly.

Xanthoparmelia eradicata

Figure 39b

Xanthoparmelia eradicata (Nylander) Hale, 1974b:487.

Parmelia constrictans var. *eradicata* Nylander in Cronw, 1876a:19; 1876b:168. [Type collection: Cape of Good Hope, South Africa, *Eaton* s.n. (BM, lectotype; G, H, Nyl. herb. no. 34812, UPS, W, ZT, islectotypes].]

*Parmelia hypeolea var. *tenuisponda* Nylander, 1860:393. [Type collection: Cape of Good Hope, South Africa, *Herb. Carr* s.n. (BM, lectotype).]

Imbricaria crinitica var. *eradicata* (Nylander) Jatta, 1902:470.

Parmelia eradicata (Nylander) Gyelnik, 1938b:25.

*Omphalodium hypolea var. *tenuisponda* (Nylander) Dodge, 1959:190.

DESCRIPTION.—Thallus loosely adnate on rock or mosses over rocks, soft, somewhat pulvinate, 3–6 cm broad, dark yellowish green; lobes sublinear to linear, 0.2–0.5 mm wide, elongate, dichotomously branched and somewhat constricted at lobes bases, divericrate and somewhat subsaccading, black rimmed; upper surface continuous to very weakly whitish-maculate in patches, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part orange; lower surface plane, smooth, black, very sparsely rhizinate, the rhizines black, coarse, simple, 0.2–0.6 mm long. Pycnidia common; conidia bicusiform, 0.5 × 6–7 μm. Apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, protocetraric (trace), norsticic (trace), and usnic acids, and skyrin (±).

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This rarely collected species occurs in the extreme southwestern Cape region on or near Table Mountain. Elix’s report from Australia (Elix, Johnston, and Armstrong, 1986) has been revised as *X. rubriperse*. It has very narrow, elongate lobes and may rarely produce skyrin (the type contains traces of unidentified anthraquinone pigments). Gyelnik (1938a:288) placed it in his section *Endoecoraeae*.

Xanthoparmelia erosa

DESCRIPTION.—Thallus vagrant, free growing on soil, 2–5 cm broad, leathery, usually fragmented into separate lobes, light yellowish green; lobes sublinear, 2–8 mm wide (to 10 mm unrolled), strongly convoluted, separate; upper surface continuous, emaculate, shiny, becoming fissured and rugulose and ultimately eroding with an extensive cover of soredia; medulla white; lower surface plane, pale to brown, sparsely rhizinate, the rhizines pale to brown, delicate, simple, 0.3–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 4.

DISTRIBUTION.—Australia (SA).

COMMENTS.—This is a very rarely collected sorediate species closely related to nonsorediate *X. convoluta*.

Figure 39. Specimens of *Xanthoparmelia*: a, *X. equalis* (Hale 75100, holotype in US); b, *X. eradicata* (*Eaton* s.n., lectotype in BM); c, *X. eruptens* (Hale 78395, holotype in US); d, *X. esterhuyseae* (*Esterhuyse* 1847d, holotype in Bol); e, *X. everdardensis* (Hale 68893); f, *X. everardensis* (Hale 75016, holotype in US). Scale in mm.
Xanthoparmelia erupts

Figure 39c

Description.—Thallus very tightly adnate to tightly adnate on rock, 2–4 cm broad, dull yellowish green; lobes sublinear, 0.3–0.7 mm wide, little branched, separate to contiguous, 1–2 mm long; upper surface continuous, emaculate, shiny, sparsely isidiate, the isidia coarse, pustular-bullate, globose, 0.2–0.3 mm in diameter, to 0.3 mm high, the tips epicorticate, whitish, fragile and erumpent apically but not becoming sorediate, unbranched; medulla white; lower surface plane, shiny, pale brown sparsely rhizinate, the rhizines simple, brown, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

Chemistry.—Evernic, lecanoric (trace), and usnic acids.

Illustration.—Hale, 1987a, fig. 7.

Distribution.—South Africa (Cape Province).

Comments.—Another isidiate species with evernic acid, *X. evernica* from SWA/Namibia, has smaller erumpent isidia. This species is closely related to *X. coneroruptens* (lecanoric acid) and *X. saleruptens* (salazinic acid). All of them are found on the lower side of large overhanging ledges in southwestern Cape Province where winter fogs come in from the ocean.

Xanthoparmelia esterhuyseniae

Figure 39d

Xanthoparmelia esterhuyseniae Hale, 1986b:577. [Type collection: Hexvivier Berg Mountains, elev. 1500 m, Clanwilliam Dist., Cape Province, South Africa, Grid 3319 CB, *Esterhuysen* 18476, 24 Mar 1951 (BOL, holotype; US, isotype.).]

Description.—Thallus loosely adnate to free growing on soil or rocks, 4–6 cm broad, dark yellowish green to blackening with age; lobes linear, 0.1–0.3 mm wide, elongate, dichotomously branched with the ultimate lobes nearly subterete, subascending; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, rarely brown or mottled at the tips but black at the center, shiny, very sparsely rhizinate, the rhizines black, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

Chemistry.—Stictic, constictic, cryptostictic, norstictic, and usnic acids.

Illustration.—Hale, 1986b, fig. 18.

Distribution.—South Africa (Cape Province).

Comments.—This finely branched species almost looks like a soil-inhabiting *Bryoria*. It is known only from the type collection. It has elongate, subterete ultimate branches, similar to those of *X. molliuscula*, which is pale brown below and has broader lobes. Another stictic acid-containing species, *X. suberadicala* from Madagascar, has broader lobes (to 1 mm wide) and lacks rhizines.

Xanthoparmelia everardensis

Figure 39e

Description.—Thallus tightly adnate to adnate on rock, 3–5 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia numerous, subspitulate, 1–3 mm in diameter; spores 5–6 × 9–10 μm.

Chemistry.—Diffuscoarya (major), barbatic (minor), 4-O-demethylbarbatic (trace), and usnic acids and atranorin (±).

Illustration.—Elix and Armstrong, 1984, fig. 5.

Distribution.—Australia (SA, NT, WA).

Comments.—Chemically it is the same as *X. tucsonensis*, an American species with a pale brown lower surface that is rarely found in northern South Australia. It occurs rather rarely in semi-arid central and southwestern Australia.

Xanthoparmelia vernica

Figure 39f

Description.—Thallus tightly adnate on rock, 3–5 cm broad, darkish yellow green; lobes sublinear, 0.3–1 mm wide, sparsely dichotomously branched, contiguous, somewhat inflated; upper surface continuous, emaculate, shiny to white pruinose, transversely cracked and rugose with age, moderately isidiate, the isidia coarse, globose and basally constricted (Figure 14b), 0.15–0.25 mm in diameter, 0.5–1.5 mm high, the tips syncorticate, pruinose, hollow and erumpent but not sorediate, unbranched; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown, 0.3–0.5 mm long. Pycnidia and apothecia not seen.

Chemistry.—Evernic, lecanoric (trace), and usnic acids.

Illustration.—Hale, 1986b, fig. 19.

Distribution.—SWA/Namibia.

Comments.—This is another Namibian endemic, clearly distinguished by the large, hollow globose, erumpent but esorediate isidia. The pruinose surface and somewhat inflated aspect resemble *X. serusiauxii* but the lower surface color differs. These two species are the last lichen survivors 40–45
km inland along the Namib Coast at the extreme eastern edge of the fog zone.

Xanthoparmelia examplaris

Figure 40a

Xanthoparmelia examplaris Elix and Johnston in Elix, Johnston, and Armstrong, 1986:243. [Type collection: 8 km N of Pimba along Stuart Highway, N.T, Elix 11043A (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, firm, 5-8 cm broad, yellowish green; lobes sublinear, 0.8-1.5 mm wide, irregularly branched, the ultimate ones subascending; upper surface continuous, emaculate, shiny, strongly rugose-bullate at the center, isidia and soredia lacking; medulla white; lower surface of main lobes plane, secondary lobes weakly convoluted and subascending, pale but darkening toward the tips, sparsely to moderately rhizinate, the rhizines pale brown, thin, simple, 0.5-1 mm long. Pycnidia common; conidia bifusiform, 0.5 x 4-5 μm. Apothecia common, substipitate, 1-4 mm in diameter; spores 4-5 x 7 μm.

CHEMISTRY.—Salazinic, consalazinic, protocetraric (+trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 17.

DISTRIBUTION.—Australia (NT).

COMMENTS.—This rare Australian species is characterized by the strongly bullose-rugose thallus and partly uplifted, weakly convoluted lobes. Morphologically similar *X. inercosta* contains norlobaridone, and chemically similar *X. neorinalis* is very tightly adnate with lobes 0.3-0.8 mm wide. *Xanthoparmelia lineola* is less tightly adnate, broader lobed (1-2.5 mm), not strongly rugose, and never has weakly convoluted laciniae.

Xanthoparmelia exsiquita

Figure 40b

Xanthoparmelia exsiquita (Elix) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:245.

Parmelia exsiquita Elix, 1981:357. [Type collection: 13 km S of Countagany along Nimmitabel Road, NSW, Australia, Elix 1982 (MEL, holotype; CBG, H, isotypes).]

DESCRIPTION.—Thallus very tightly adnate on rock, somewhat areolate at the center, 4-7 cm broad, yellowish green but darkening with age; lobes sublinear, 0.3-0.5 mm wide, short, dichotomously branched, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, densely isidiate, the isidia cylindrical (Figure 14f), 0.05-0.07 mm in diameter, 0.1-0.5 mm high, the tips syncorticate, blackening, simple to sparsely branched; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.1-0.2 mm long. Pycnidia lacking. Apothecia rare, adnate, 1-2 mm in diameter; spores 4-6 x 7-9 μm.

CHEMISTRY.—Norlobaridone, usnic acid, aranorin (+), and usnic acid, aranorin (+), unknown R_{e}12 (+).

ILLUSTRATION.—Elix, 1981, fig. 6.

DISTRIBUTION.—Australia (Qld, NSW, Vic, SA, WA), New Zealand.

COMMENTS.—This may be the tightly adnate morphotype of *X. amplexula*. Another related species, occurring in SWA/Namibia, *X. subamplexuloides*, has globose, pale-tipped isidia and always lacks usnic acid. The Australian *X. immutata* is also closely related but contains the scabrosin complex.

Xanthoparmelia farinosa

Figure 40c

Parmelia farinosa Vainio, 1890:62. [Type collection: Sitio, Minas Gerais, Brazil, Vainio, Lich. Bras. Ess. 551 (TUR, lectotype; BM, UPS, isolecotypes).]

Parmelia conspersa var. *rugulosa* Müller Argoviensis, 1888:158. [Type collection: Flores Island, near Montevideo, Hariot 42 (G, lectotype).]

Parmelia rugulosa (Müller Argoviensis) Gyelnik, 1934c:163. [Superfluous combination. Invalid combination without citing basionym.]

DESCRIPTION.—Thallus adnate on rock, 2–4 cm broad, light yellowish green; lobes subirregular to sublinear, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately sorediate, the soralia laminal, orbicular, 0.4–1 mm in diameter; medulla white; lower surface plane, shiny, pale brown, moderately rhizinate, the rhizines pale brown or darkening, simple, 0.3–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, norstictic, consalazinic, and usnic acids.

DISTRIBUTION.—Ecuador, Peru, Brazil, Uruguay, Argentina.

COMMENTS.—This rather infrequently collected member of the X. ulcerosa group has a unique chemistry among the sorediate species. Vainio (1890:62) proposed the epithet Parmelia farinosa (identical with P. conspersa var. rugulosa Müller Argoviensis published two years earlier) instead of raising var. rugulosa to species rank since “jam nuncupata est P. rugulosa (Nyl.) in Hook., 1860:348.” The species referred to in Hooker, however, is Placodium rugosulum Nylander (= Xanthoria), which Hooker later recombined as a Parmelia.

Xanthoparmelia felkaensis

Figure 4G

Xanthoparmelia felkaensis (Gyelnik) Hale, 1988b:403.

Parmelia conspersa var. felkaensis Gyelnik, 1930b:32. [Type collection: Felkai vizesés, Com. Szepes, Magas-Tátra, Hungary, Tömbkő 3618, 1 Aug 1917 (BP, lectotype).]

Parmelia conspersa f. alpigena Suza, 1930:26. [Type collection: Lake Batizovské, Vysoké Tatry, Czechoslovakia, Suza s.n., Aug 1924 (PRM, lectotype).]

Parmelia conspersa f. felkaensis (Gyelnik) Gyelnik, 1936:123.

DESCRIPTION.—Thallus loosely adnate on granitic rocks or on mosses over rocks, pulvinate, bristle, 5–10 cm broad, dark yellowish green; lobes sublinear, 0.6–1.2 mm wide, short and irregularly branched, almost appearing inflated, densely imbricate, the margins crenate and black rimmed, short lobulate with age; upper surface continuous to faintly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

DISTRIBUTION.—Czechoslovakia, Hungary.

COMMENTS.—This highly restricted species grows at 1800–1900 m in exposed habitats in the Tatra Mountains. While Gyelnik published var. felkaensis without comment, Suza emphasized the pulvinate growth form, black rimmed lobes, and alpine habitat. It is apparently related to *X. somloensis* but lacks strong maculation and has relatively short, densely crowded, almost inflated lobes.

Xanthoparmelia ferraroiana

Xanthoparmelia ferraroiana Nash, Elix, and Johnston, 1987:289. [Type collection: 18 km south of Potrerillos, Prov. Mendoza, Argentina, Nash 23940 (ASU, holotype; ANU, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, to 8 cm broad, yellowish green; lobes subirregular, apically subround, 1.6–6 mm wide, contiguous to imbricate; upper surface dull, rugose at the center, sorediate, the soralia laminal to submarginal, orbicular and separate but coalescing with age; medulla white; lower surface pale brown to brown, densely rhizinate, the rhizines short, concolorous with the lower surface, simple, 0.3–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Psoromic, 2′-O-demethylpsoromic, and usnic acids.

ILLUSTRATION.—Nash, Elix, and Johnston, 1987, fig. 4.

DISTRIBUTION.—Argentina.

COMMENTS.—This common but previously overlooked sorediate species is externally similar to *X. farinosa*, which contains the stictic acid complex. It has been found only in Argentina.

Xanthoparmelia ferrum

Xanthoparmelia ferrum Elix and Johnston in Elix, Johnston, and Armstrong, 1986:247. [Type collection: 13 km SW of Quorn, S.A., Australia, Hale 58373 (US, holotype).]

DESCRIPTION.—Thallus adnate on rock, 4–8 cm broad, yellowish green; lobes subirregular, 1.5–3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla ochre in part; lower surface plane, pale or darker brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.3 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 1–3 mm in diameter; spores 5 × 8–9 μm.

CHEMISTRY.—Salazinic, consalazinic, protocetraric (±), and usnic acids, skyrin.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 18.

DISTRIBUTION.—Australia (SA).

COMMENTS.—Superficially close to *X. lineola*, this species is known from two localities in South Australia.

Xanthoparmelia filarszkyana

Figure 40e

Xanthoparmelia filarszkyana (Gyelnik) Hale, 1974b:487.

Parmelia filarszkyana Gyelnik, 1938a:278. [Type collection: Round Swamp, Ogunbil, Jamworth [sic] (= Tamworth), NSW, Australia, Gardner s.n. (BP, lectotype; designated type in Bouly de Lestain herbarium destroyed).]

Parmelia praetermissa Kurokawa and Filson, 1975:41. [Type collection: Olive Grove Station, 14.48 km S of Quorn, S.A., Australia, Filson 11995 (MEL, holotype; TNS, isotype).]

Figure 40.—Species of Xanthoparmelia: a, X. examplaris (Elix 11043A); b, X. exilissina (Elix 1982); c, X. farinosa (Paulo s.n.); d, X. felkaensis (Gyelnik s.n., lectotype in BP); e, X. filarszkyana (Hale 66630); f, X. filsonii (Elix 16639). Scale in mm.
DESCRIPTION.—Thallus tightly adnate to adnate on rock, 4–10 cm broad, yellowish green; lobes subirregular, 1.5–2.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subpapillate, 2–5 mm in diameter; spores 6–7 × 9–10 μm.

CHEMISTRY.—Norlobaridone, loxodin (±), conorobaridone (±trace), conloxadon (±trace), conzadon (±), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 3, fig. 1 (as Parmelia praetermissa).

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This is one of the more common Xanthoparmelia in Australia, a kind of vicariant of X. cumberlandia in eastern North America. It is usually quite closely adnate but may intergrade with loosely adnate X. flaviscintireagens.

Xanthoparmelia filsonii

Illustration 40f

Xanthoparmelia filsonii Elix and Johnston in Elix, Johnston, and Armstrong, 1986:251. [Type collection: 1 km SW Heberton, Qld., Australia, Elix 16639 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 5–7 cm broad, yellowish green but darkening at the center; lobes sublinear, 0.2–0.7 mm wide, contiguous to imbricate, the tips humping up, black rimmed; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical (Figure 15b), 0.05–0.07 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, darkening, mostly unbranched; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, rather stout, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic, norstictic acids, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 19.

DISTRIBUTION.—Australia (Qld, WA).

COMMENTS.—This rare Australian lichen is externally similar to stictic acid-containing X. mougeotina in having a centrally areolate thallus.

Xanthoparmelia flaviscintireagens

Illustration 41a

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely also on soil, rather firm but usually breaking apart when collected, 4–10 cm broad, light yellowish green or darkening with age; lobes variable, subirregular to sublinear, 1–3 mm wide, nearly separate to imbricate, sometimes elongate-lacinate, the laciniae 0.2–0.5 mm wide, at times subterete, prostrate to subsessile; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to vaguely subcanaliculate, smooth to rugose, brown, often darkening in the marginal zone, sparsely to moderately rhizinate, the rhizines pale brown or darkening, simple, 0.2–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subpapillate, 2–8 mm in diameter; spores 4 × 8–9 μm.

CHEMISTRY.—Norlobaridone, loxodin, scabrosin 4,4'-diacetate (±), scabrosin 4-acetate-4'-butyrate (±), scabrosin 4-acetate-4'-hexanoate (±), scabrosin 4,4'-dibutyrate (±), conloxadon (±), conorobaridone (±), and usnic acid.

ILLUSTRATION.—Galloway, 1980, fig. 4.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand, Peru.

COMMENTS.—An extremely variable species, often weakly channelled below and suberect at the margins, X. flaviscintireagens is one of the most common lichens in Australia and New Zealand (with a single disjunct record in Peru). It is often difficult to key because the great variability is not easily accommodated in a dichotomous key.

Xanthoparmelia flindersiana

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 2–8 cm broad, dark yellowish green; lobes sublinear, 1–2 mm wide, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked, moderately isidiate, the isidia globose, somewhat bloated, 0.10–0.15 mm in diameter, 0.1–0.2 mm high, the tips epicoticate, bursting open and becoming pustulate, unbranched; medulla white; lower surface plane, brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.3 mm long. Pycnidia lacking. Apothecia rare, adnate, 1.0 mm in diameter; spores absent.

CHEMISTRY.—Norstictic, norstictic acids, salazinic (trace), hypostictic (trace), hypocoastistic (trace), hyposalazinic (trace), and usnic acids (det. J. Johnston).

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 6.

DISTRIBUTION.—Australia (NSW, Vic, SA, WA), New Zealand.

COMMENTS.—Three other erumpent-isidiate species in Australia contain norstictic acid. Xanthoparmelia alexandrensis and X. pustulata both have a black lower surface, and X.
norpraegranis has weakly erumpent isidia and lacks hypoactic and hyposalazinic acids.

Xanthoparmelia fucina

Figure 41b

Xanthoparmelia fucina Knox in Knox and Brusse, 1983:150. [Type collection: World’s View, Matopos, Zimbabwe, Schelpe 1591 (BOL, holotype; US, isotype).]

DESCRIPTION.—Thallus adnate on rock, 3–6 cm broad, yellowish green; lobes subirregular, 0.8–1.5 mm wide, short, contiguous; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical, 0.06–0.15 mm in diameter, 0.2–1 mm high, the tips syncorticate, pale branched, sparingly branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple or branched, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Protocetraric and usnic acids.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 6.

DISTRIBUTION.—Zimbabwe, SWA/Namibia.

COMMENTS.—The only other species in the genus with protocetraric acid and isidia is the Australian *X. stuartensis*, which has short, erumpent isidia. The original report of *skyrin* (as rhodophyscin) in this species is apparently incorrect; on careful reexamination the type collection lacks any pigmentation. The species is now known from Zimbabwe and the Waterberg Plateau in Namibia.

Xanthoparmelia furigata

Figure 41c

Parmelia furigata Kurokawa, 1955:81. [Type collection: 18 km E of Kondinin, WA, Australia, S. Nakanishi 17 (TNS, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 3–8 cm broad, dark yellowish green at the center but lighter at the tips; lobes sublinear, 0.6–1 mm wide, irregularly branched, crowded at the center, short laciniate, the laciniae 0.1–0.3 mm wide, imbricate; upper surface continuous, emaculate, shiny, rugose with age, isidia and soredia lacking; medulla white; lower surface plane, brown, sparsely rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia poorly developed; conidia not found. Apothecia well developed, substipitate, 1–3 mm in diameter; spores 5 × 7–8 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, protocetraric (trace), conprotocetraric (trace), and usnic acids, atranorin (trace).

ILLUSTRATION.—Kurokawa, 1985, fig. 4.

DISTRIBUTION.—Australia (WA).

COMMENTS.—This rare species is related to another from Australia, *X. perinax*, which is adnate and has subirregular lobes 1–2.5 mm wide. It is also distantly related to the South African *X. phaeophana* group but lacks maculae and physodalic acid and has narrow crowded sublaciniate lobes. It is only known from western Australia.

Xanthoparmelia furcata

Figure 41d

Xanthoparmelia furcata (Müller Argovienis) Hale, 1974b:487.

Parmelia furcata Müller Argovienis, 1886:256. [Type collection: SW, Australia, Leichhardt s.n. (G, lectotype; M, W, isotypes).]

Parmelia subconspersa var. *substenophylla* Geyl., 1930a:60. [Type collection: s.l., s.c. (H, Nyl. herb. no. 34717, lectotype; BP, isotype).]

Parmelia foliosa Kreibich ex Geyl., 1935:35. [Type collection: SWA/Namibia, Leichhardt s.n. (W, lectotype; M, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, firm, 5–8 cm broad, yellowish green; lobes sublinear, 0.8–3 mm wide, irregularly dichotomously branched, divaricate-imbricate, subsceding, black rimmed; upper surface continuous, shiny, isidia and soredia lacking; medulla white; lower surface plane to weakly canaliculate, more or less uniformly brown, blackening only at the tips, shiny, rugulose, sparsely rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia not commonly developed, substipitate, 2–5 mm in diameter; spores 5 × 8–9 μm.

CHEMISTRY.—Norllobaldin, loxodin, norllobalin methyl ester (≥trace), and usnic acid.

ILLUSTRATIONS.—Kurokawa, 1969, pl. 1: fig. 2; Galloway (1980), fig. 5A.

DISTRIBUTION.—Australia, New Zealand.

COMMENTS.—This rather common Australasian lichen is close to *X. dichotoma*, which has a distinctly black lower surface and generally occurs in moister habitats (Elix et al., 1986). Geyl (1935:35) cited *P. foliosa* as the type of *Parmelia* subgenus *Omphalodium* section *Xanthophalodium* Geyl and included it with *Parmelia convoluta* (Hue) Zahlbruckner (= *Xanthomaculina convoluta* (Hue) Hale). When describing *P. subconspersa* var. *stenophylla* he added a note on the label to the effect that the locality was unknown, but in my opinion the specimen must have come from Australia because of the chemistry.

Xanthoparmelia geesterani

Figure 41e

Xanthoparmelia geesterani (Hale) Hale, 1988b:403.

Pseudoparmelia geesterani (Hale) Hale, 1974a:190.

DESCRIPTION.—Thallus tightly adnate on rock, somewhat areolate at the center, 2–4 cm broad, dull yellowish green; lobes subirregular, 0.7–1.1 mm wide, short, contiguous to imbricate; upper surface continuous, emaculate, shiny, densely...
Xanthoparmelia glareosa

Xanthoparmelia glareosa (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:256.

Paraphoma glareosa Kurokawa and Filson, 1982:536. [Type collection: 9 mi E of Cooma on Numeralla Road, NSW, Australia, Kurokawa 6447 (TNS, holotype; MEL, isotype).]

DESCRIPTION.—Thallus loosely adnate on pebbles on soil or on rocks, 5–12 cm broad, dull yellowish green; lobes sublinear to subirregular, 1–2.5 mm wide, irregularly contorted, contiguous to imbricate, with numerous secondary lobes 0.4–1 mm wide developing in the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately to densely rhizinate, the rhizines black, simple to sparsely furcate at maturity, 0.2–0.8 mm long. Pycnidia lacking. Apothecia common, substipitate, 2–6 mm in diameter; spores 6 × 10–12 μm.

CHEMISTRY.—Norstictic, connorstictic, salazinic (±), and usnic acids.

ILLUSTRATION.—Filson, 1982, fig. 7.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—X. glareosa is close to X. congesa, which has broader lobes and is sparsely rhizinate.

Xanthoparmelia globisidiosa

Xanthoparmelia globisidiosa Hale, 1986b:578. [Type collection: 25 km S of Clanwilliam along Hwy N7, elev. ca. 300 m, Cape Province, South Africa, Grid 3218 DD, Hale 12030, 25 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, fragile and easily breaking apart when collected, 4–8 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, short, imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia globose to irregularly inflated (Figure 15d), 0.10–0.15 mm in diameter, 0.1–0.3 mm high, the tips syncorticate to weakly epicorticate, shiny, pale, weakly erumpent but not becoming sorediate, sparsely short-branched; medulla white; lower surface plane, shiny, very pale tan, very sparsely rhizinate, the rhizines pale, coarse, simple, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, and usnic acids, unknown substance.

ILLUSTRATION.—Hale, 1986b, fig. 20.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The most unusual features of this lichen are the very sparse rhizines (the original description incorrectly stated no rhizines present), the very pale brown lower surface color, and the globose isidia. It is known only from the type locality in southern Namaqualand. Xanthoparmelia subplittii from the Neotropics is uniformly moderately rhizinate below with more clearly erumpent isidia.
Xanthoparmelia globulifera

Figure 42a

Xanthoparmelia globulifera (Kurokawa and Filson) Hale, 1984:79.
Parmaelia globulifera Kurokawa and Filson, 1975:38. [Type collection: Wyenbring Rocks, 1.2 km N of Wyenbring, S.A., Australia, Filson 11940 (MEL, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 2–5 cm broad; lobes sublinear, 0.4–1 mm wide, contiguous; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia 0.1–0.15 mm in diameter, 0.1–0.2 mm high, the tips epicoticate, bloated and erumpent, hollow, becoming subsorediate, unbranched; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Conspicat, protoconstipatic, and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 1: fig. 4.
DISTRIBUTION.—Australia (SA, WA).

COMMENTS.—A very rare species in arid Australia. *X. globulifera* has the same tightly adnate thallus and erumpent isidia as *X. dayiana* (fumarprotocetraric acid) and *X. praegnans* (salazinic acid).

Xanthoparmelia glomerulata

Xanthoparmelia glomerulata Krog and Swinscow, 1987:424. [Type collection: Mt. Meru, Arusha Distr., Northern Province, Tanzania, elev. 1900 m, Krog and Swinscow T10/119 (O, holotype; BM, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 2–7 cm broad, light yellowish green; lobes sublinear, 0.4–1 mm wide, dichotomously branched, separate to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately to densely isidiate, the isidia subglobose, 0.08–0.1 mm in diameter, up to 2 mm high, becoming densely aggregated, the tips epicoticate, pale, erumpent and subsorediate with age, becoming richly branched; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines brown, simple, rather coarse, unbranched, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, and usnic acids.

ILLUSTRATION.—Krog and Swinscow, 1987, fig. 3.
DISTRIBUTION.—Kenya, Tanzania.

COMMENTS.—The tall, erumpent and subsorediate, clustered isidia are unique in the genus. The species is known from two localities in East Africa (Swinscow and Krog, 1987).

Xanthoparmelia gongylodes

Figure 42b

Xanthoparmelia gongylodes Elix and Johnston in Elix, Johnston, and Armstrong, 1986:258. [Type collection: Copley-Balcanoona Road, 33 km E of Copley, Flinders Ranges, S.A., Australia, elev. 520 m, Elix 18008, 30 Oct 1984 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–7 cm broad, darkish yellow green; lobes sublinear, 0.8–1.5 mm wide, contiguous to imbricate and crowded at the center; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately to densely isidiate, the isidia subglobose to cylindrical or irregularly inflated (Figure 15c), 0.08–0.15 mm in diameter, to 1 mm high, the tips epicoticate, dull, in part weakly erumpent, sparsely branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.6 mm long. Pycnidia rare; conidia cylindrical, 0.5 × 4–5 μm. Apothecia rare, subimbricate, 2–4 mm in diameter; spores 3–5 × 6–8 μm.

CHEMISTRY.—Hypostictic, hyposalazinic, hypoconstipatic (+), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 20.

DISTRIBUTION.—Australia (SA, WA).

COMMENTS.—This is the only isidiate species in Australia with the hypostictic acid series. There are four known localities in arid shrublands. The South American *X. kalbii* and the South African *X. saniensis*, both with the same chemistry, have erumpent globose isidia.

Xanthoparmelia granulata

Figure 42c

Xanthoparmelia granulata Hale, 1989a:545. [Type collection: On sheltered dolerite ledge, 56.1 km N of Maphalaneng on Sani Pass-Moteng Pass road, elev. ca. 3000 m, Lesotho, Grid 2828 DD, Hale 81540, 7 May 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock (removed free when wetted), fragile and breaking into pieces, dull yellowish green, 4–6 cm broad; lobes subirregular, 0.8–1.3 mm wide, black rimmed, subimbricate; upper surface continuous, emaculate, dull to faintly white-pruinose, soon strongly rugose, the wrinkles becoming irregularly pustulate, erupting and forming coarse soredia; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines simple, 0.3–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 10.

DISTRIBUTION.—Lesotho.

COMMENTS.—The granular pustules are vaguely similar to those of *Flavoparmelia caperata* (L.) Hale, but the narrow lobes and pale lower surface are typical of *Xanthoparmelia*. It is known only from the type collection at high elevation in

Figure 42.—Species of *Xanthoparmelia*: a, *X. globulifera* (Day 10848, holotype in MEL x10); b, *X. gongylodes* (Elix 18008, holotype in CBG); c, *X. granulata* (Hale 81540, holotype in US); d, *X. greysonensis* (Hale 78151); e, *X. gryphorica* (Hale 76856); f, *X. harrisii* (Hale 81203, holotype in US). Scale in mm.
Lesotho.

Xanthoparmelia greytonensis, new species

Figure 42d

Thallus arctissime adnatus, saxicola, 4–7 cm latus, lobis sublinearibus, 0.3–0.5 mm latis, elongatis, superne continuus, emaculatus, transversim fissurinus, sorediis isidiosae destitu- tus, subitus planus, niger, modice rhizinosus.

DESCRIPTION.—Thallus very tightly to tightly adnate on rock, appearing somewhat areolate at the center, 4–7 cm broad, yellowish green but darkening somewhat at the center with age; lobes sublinear, 0.3–0.5 mm wide, elongate, sparsely dichotomously branched, short laciniate with age on the margins, separate to imbricate; upper surface continuous, emaculate, shiny, transversely craked, soredia and isidia lacking; medulla white; lower surface plane, black, shiny, moderately rhizinate, the rhizines black, simple, rather fragile, 0.1–0.2 mm long. Pycnidia poorly developed; conidia more or less cylindrical, 0.5 × 5–6 μm. Apothecia poorly developed, sessile, 0.2–0.5 mm in diameter; spores lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This delicate species occurs on sandstone outcrops in coastal Fynbos in a small area of southeastern Cape Province. It is closely related to the Australian/South African *X. xanthomelaena*, which has a much darker thallus, more robust, discrete rhizines, black-rimmed lobes, and large conidia (7–9 μm long).

Xanthoparmelia gyrophorica

Figure 42e

Xanthoparmelia gyrophorica Hale, 1986b:578. [Type collection: Sani Pass, elev. 2375 m, Lesotho, Grid 2929 CB, *Hale* 74034, 19 Feb 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, 6–12 cm broad, bright yellowish green; lobes subirregular, apically rotund, contiguous to imbricate, 2–6 mm wide; upper surface continuous, emaculate, dull, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines brown to blackening, rather coarse, 0.5–1 mm. Pycnidia numerous; conidia biseriata, 0.5 × 5–6 μm. Apothecia common, adnate, 5–8 mm in diameter; spores 6–7 × 9–10 μm.

CHEMISTRY.—Gyrophoric, laceranic (trace), 2,4-di-O-methylgycophoric (trace), 5-O-methylhiascic (trace), and usnic acids (det. J. Johnston).

ILLUSTRATION.—Hale, 1986b, fig. 21.

DISTRIBUTION.—South Africa (Cape Province, Natal), Lesotho.

COMMENTS.—Gyrophoric acid is extremely rare as a major metabolite in *Xanthoparmelia*, so far known only in two other South African species, effigurate-maculate *X. leucostigma* and tightly adnate *X. olivetorica*. This species is common in rock grasslands at high elevations in the Drakensberg escarpment.

Xanthoparmelia harrisii

Figure 42f

Xanthoparmelia harrisii Hale, 1989a:547. [Type collection: Gravel flats, 18.2 km NE of Cape Cross on E side of Hwy D2301, elev. 100 m, SWA/Namibia, Grid 2113 DB, *Hale* 81203, 22 Apr 1988 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus tightly adnate on quartz pebbles, light yellow green at the tips but darkening to blackish brown at the center, 1–2 cm broad; lobes sublinear, 0.5–1 mm wide, convex, little branched, separate to contiguous; upper surface continuous, emaculate, dull and light pruinose, sparsely to densely isidiate, the isidia coarse, cylindrical (Figure 15), 0.1–0.2 mm in diameter, to 2 mm high, the tips syncorticate, dark, becoming richly branched; medulla white; lower surface plane, pale brown, sparsely rhizinate, the rhizines short, coarse, 0.1–0.2 mm long, unbranched. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypostictic, hyposalazinic, hypocoenistic, caperatic (±), and usnic acids, associated undetermined spots.

ILLUSTRATION.—Hale, 1989a, fig. 11.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This widespread, easily overlooked Namib desert lichen grows on the lower edge of quartzite pebbles. The center is almost black but the marginal lobes, especially where protected on the lower side of the rock, are bright yellow. It would otherwise be identified as a *Neofuscus* and the actual relationship to that genus still needs clarification. It is confined to the coastal fog zone in Namibia and forms an important component of the terricolous lichen community.

Xanthoparmelia heinari

Figure 43a

Xanthoparmelia heinari Elix and Johnston, 1988b:357. [Type collection: Wauchope Trg, Broken Bago Range, Broken Bago State Forest, 6 km S of Wauchope, New South Wales, Australia, *Streimann* 38549 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 5–8 cm broad, dark yellow green toward the center; lobes sublinear, 0.3–1 mm wide, short and irregularly branched, black-rimmed, imbricate; upper surface continuous, emaculate, shiny, irregularly cracked with age, moderately to densely isidiate, the isidia subglobose to cylindrical, the tips syncorticate, eroding off but not sorediate, 0.07–0.1 mm in diameter, to 0.25 mm high, branching sparingly; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate,
the rhizines black, simple, 0.1-0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic (major), connorstictic, and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1988b, fig. 5.

DISTRIBUTION.—Australia (NSW).

COMMMENTS.—Four other norstictic acid-containing species in Australasia have isidia and a black lower surface. *Xanthoparmelia alexandrensis* is loosely adnate and has weakly erumpent isidia, and *X. pustuliza* is tightly adnate and has strongly erumpent, pustular isidia. The fourth species, *X. filsonii*, is extremely close but has significantly narrower isidia (0.05-0.07 mm).

Xanthoparmelia heterodoxa

![Figure 43b](Xanthoparmelia heterodoxa (Hale) Hale, 1974b:487. *Parmelia heterodoxa* Hale, 1971a:349. [Type collection: Natal Table Mountain, Dist. Pietermaritzburg, South Africa, Alm born 8595 (LD, holotype; US, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, fragile, 1-3 cm broad, dark yellowish green; lobes sublinear, 0.3-0.6 mm wide, contiguous to imbricate, narrowly black rimmed; upper surface continuous, shiny, faintly reticulate-maculate at the tips, transversely cracked toward the center, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, simple, 0.1-0.2 mm long. Pycnidia rarely developed; conidia cylindrical, 0.5 × 11-14 μm. Apothecia poorly developed, adnate, 0.3-1 mm in diameter; spores 6-8 μm.

CHEMISTRY.—Caperatic, olivetoric, 4-O-demethylmicrophyllinic, and usnic acids.

ILLUSTRATION.—Hale, 1971a, fig. 2c.

DISTRIBUTION.—South Africa (Transvaal).

COMMMENTS.—This species, the only one with olivetoric acid in the genus, has the largest conidia so far discovered in *Xanthoparmelia*. Externally it is identical with *X. stenosporonica*, another South African endemic with stenosporonic acid. It is common on Natal Table Mountain but can be found in other moist sandstone localities in Natal.

Xanthoparmelia huachucensis

![Figure 43c](Xanthoparmelia huachucensis (Nash) Egan, 1975:221. *Parmelia huachucensis* Nash, 1973:214. [Type collection: Parker Canyon Lake, Huachuca Mountains, Cochise Co., Arizona, USA, Nash 3981 (ASU, holotype; DUKE, M1N, US, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 4-8 cm broad, dark yellowish green; lobes sublinear, 0.4-1 mm wide, elongate and narrow, dichotomously branched, imbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines, black, simple, 0.3-0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6-7 μm. Apothecia common, subspitate, 3-7 mm in diameter; spores 5-6 × 9-10 μm.

CHEMISTRY.—Psoromic, 2'-O-demethylpsoromic, and usnic acids.

ILLUSTRATION.—Nash, 1973, fig. 2.

DISTRIBUTION.—Western North America, Argentina.

COMMMENTS.—This species, *X. psoronica* in South Africa, and *X. nigropsoromifera* in the Sonoran Desert of USA are the only psoromic acid-containing species with a black lower surface in the genus. *Xanthoparmelia psoronica* has much broader lobes 3-7 mm wide, and *X. nigropsoromifera* has lobes more than 1 mm wide.

Xanthoparmelia hybrida

![Figure 43d](Xanthoparmelia hybrida Hale, 1986b:580. [Type collection: Treur River near Bouktes Lick, Pilgrims Rest, elev. 1200 m, Transvaal, South Africa, Grid 2430 DB, Hale 72083, 14 Jan 1986 (US, holotype; LD, PBE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 6-9 cm broad, yellowish green; lobes subirregular to sublinear, 1-2.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, becoming strongly transversely cracked toward the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately to rather densely rhizinate, the rhizines brown, 0.5-1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5-6 μm. Apothecia adnate, 2-4 mm in diameter; spores not developed.

CHEMISTRY.—Protocetraric, pseudostictic (unknown K+ deep orange-red compound near stictic acid), and usnic acids (det. A. Johnson).

ILLUSTRATION.—Hale, 1986b, fig. 22.

DISTRIBUTION.—South Africa (Transvaal).

COMMMENTS.—This rare lichen in the Transvaal Drakensbergs is distinguished by the unique combination of a P+ and K+ acid, not previously reported in the genus. The original identification as stictic acid was incorrect; the K+ substance is pseudostictic acid. Morphologically it might be mistaken for an adnate specimen of *X. austroafricana*, which also contains protocetraric acid but is always K- in the medulla.

Xanthoparmelia hybridiza

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 5-8 cm broad, yellowish green but darkening with age; lobes sublinear-elongate, 1-2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, opaque, transversely cracked with age, isidia and soredia lacking; medulla white;
lower surface plane, pale tan to brown but darkening to blackish at lobe tips, moderately to densely rhizinate, the rhizines brown, simple, slender, 0.3–0.6 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia well developed, subtipulate, 1–4 mm in diameter; spores 5–6 × 7–9 μm.

CHEMISTRY.—Barbatic (major), salazinic (major), 4-O-demethylbarbatic (trace), norstictic (±trace), consalazinic, and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 6.

DISTRIBUTION.—Australia (Tas, Vic, SA, WA).

COMMENTS.—This widespread species with a hybrid chemistry is superficially similar to X. lineola, which contains only salazinic acid as the major component and within Australia has a more northerly, eastern distribution.

Xanthoparmelia hypoleia

Figure 43

Xanthoparmelia hypoleia (Nylander) Hale, 1974b:487.

Parmelia hypoleia Nylander, 1860:593. [Type collection: Cape of Good Hope, South Africa, s. c. (FM-Tuck, lectotype: II, Nyl. herb. no. 34824, isotype type).]

Parmelia leonora var. multifida Flotow, 1843:27. [Type collection: Cape of Good Hope, South Africa, s. c. (BM, lectotype). Illegitimate name.]

Parmelia hypoleia var. crenata Nylander in Hae, 1890:82/290. [Nomen nudum.]

Parmelia hypoleoides Vainio, 1926:1. [Type collection: Near Paarl, South Africa, van Veldes 334 (TUR, Vainio no. 34578, lectotype).]

Parmelia hypoleia var. hypoleoides Vainio Gyelnik, 1938b:29.

Omphalodium hypoleum (Nylander) Dodge, 1959:189.

DESCRIPTION.—Thallus loosely adnate on rock, more or less pulvinate, stiff, 5–10 cm broad, dark yellowish green; lobes sublinear to linear, 0.6–2 mm wide, dichotomously branched, imbricate, subascending at the tips; upper surface effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to weakly canaliculate with a yellow rim toward the tips, black, very sparsely rhizinate, the rhizines black, simple to furcate, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subtipulate, 3–7 mm in diameter; spores 6–7 × 10–12 μm.

CHEMISTRY.—Protocetraric, virenic (±trace), and usnic acids.

ILLUSTRATIONS.—Elix, Johnston, and Armstrong, 1986, fig. 21; Swinscow and Krog, 1988, fig. 182.

DISTRIBUTION.—Australia (WA), South Africa (Cape Province), Uganda.

COMMENTS.—X. hypoleia was one of the first described of the South African lichens. It is very common in Namaqualand and southwestern Cape Province but is very rare in western Australia. It is the parent species for the X. hypoleia group, characterized by linear lobes, an effigurate-maculate upper surface, and a jet black, often sparsely rhizinate lower surface. While most specimens in South Africa fit these limits, there is great variation in rhizine density and lobe width, so much so that broad-lobed, densely rhizinate specimens, common in Namaqualand, may not even be identified at first as X. hypoleia.

Other species of this group in South Africa include the very common X. hypoprotocetraria (also common in Australia), rare X. burmeisteri (also in Australia), X. cedrus-montana, and X. dysprosa. In Australia one will also find X. mannunensis, X. pseudohypoleia, and X. notata. There are subtle morphological and ecological differences between these species but none has been carefully studied in the field.

Nylander (1860) mentioned a specimen from the Cape of Good Hope with crenate apothecia and labeled one in his herbarium as "hypoleia (crenata)" (H-Nyl 34824) but did not formally propose a name, as Gyelnik (1938b:28) noted. Hae (1890:290) listed it as var. 1 crenata (var. 2 is tenuiflora). This name is a nomen nudum.

Xanthoparmelia hypomelaena

Figure 43f

Xanthoparmelia hypomelaena (Hale) Hale, 1974b:487.

Parmelia hypomelaena Hale, 1967:416. [Type collection: S of Ouachita River, Jones Mill, Malvern, Hot Spring Co., Arkansas, USA, Demaree 34598 (US, holotype; DUKE, UPS, WIS, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 4–10 cm broad, yellowish green; lobes subregular to sublinear, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia numerous, subtipulate, 1–2 mm in diameter; spores 5–6 × 10–12 μm.

CHEMISTRY.—Fumarprotocetraric, succinoprotocetraric, physodic (±trace), and usnic acids.

ILLUSTRATION.—Hale, 1967, fig. 4.

DISTRIBUTION.—South-central USA.

COMMENTS.—There are no close relatives for this narrowly endemic species, most common in the state of Arkansas. Xanthoparmelia novomexicana from western USA and Mexico is very tightly adnate with crowded lobes and lacks succinoprotocetraric acid. The Australia X. hypomelaenoides has more apically round, subregular lobes.

Xanthoparmelia hypomelaenoides

Figure 44a

Xanthoparmelia hypomelaenoides Elix and Johnston in Elix, Johnston, and Armstrong, 1986:263. [Type collection: 3 km E of Copley, Flinders Ranges, S.A., Australia, Elix 18004, 30 Oct 1984 (CBG, holotype).]
DESCRIPTION.—Thallus adnate on rock, 3–7 cm broad, pale yellowish green or darkening with age; lobes subirregular, 1–2.5 mm wide, short and irregularly branched, apically rotund, in part subascending, subrevolute, separate to subimbricate; upper surface continuous, emaculate, dull, becoming strongly rugulose, with age, transversely cracked; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhinzes black, brown at the tips, simple, robust, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–5 μm. Apothecia lacking.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, protocetraric (trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 22.

DISTRIBUTION.—Australia (Qld, SA).

COMMENTS.—Xanthoparmelia hypomelaenoides is a rare species in southeastern Australia, known from four collections.

Xanthoparmelia hypomelaenoides

Xanthoparmelia hypoprotocetrarica

Figure 44b

Xanthoparmelia hypoprotocetrarica (Kurokawa and Elix) Hale, 1974b:487.

Parmelia hypoprotocetrarica Kurokawa and Elix, 1971:113. [Type collection: Coppings' Crossing, A.C.T, Australia, Elix 101 (TNS, holotype; CANB, MEL, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, often pulvinate, 6–15 cm broad light yellowish green or darkening; lobes sublinear to linear, 1–1.5 mm wide, loosely imbricate, often subascending; upper surface effiguratemaculate, isidia and soredia lacking; medulla white; lower surface plane, black, rugulose, sparsely rhizinate, the rhinzes black, simple to furcate, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–8 mm in diameter; spores 4–6 × 8–11 μm.

CHEMISTRY.—Protocetraric, 4-O-demethylnotatic (±), 4-O-methylhydroprotocetraric (±trace), notatic (±trace), hyposctic (±trace), hyposalazinic (±trace), and usnic acids.

ILLUSTRATION.—Kurokawa and Elix, 1971, fig. 1.

DISTRIBUTION.—Australia (NSW, ACT, Vic, SA), South Africa (Cape Province).

COMMENTS.—A member of the X. hypoleia group, X. hypoprotocetrarica is very common on exposed rocks in the karoo in southern Africa, where it occurs often with X. hypoleia. Though common in Australia, it has a more limited distribution than X. notata, the most commonly collected species.

Xanthoparmelia hypoprotocetrarica

Figure 44c

Xanthoparmelia hypoprotocetrarica (Müller Argoviensis.) Hale, 1974b:488.

Parmelia hypoprotocetrarica Müller Argoviensis, 1887:317. [Type collection: Uruguay, Arechavaleta 12 (G, lectotype).]

Parmelia montevidensis Müller Argoviensis, 1891:379. [Type collection: Cerro Melones, Montevideo, Uruguay, Filippone 8 (BM, lectotype; G, isotype).]

Parmelia conspersa f. montevidensis (Müller Argoviensis) Gyelnik, 1936:123.

Xanthoparmelia australamerica (Hale, 1985a:282. [Type collection: Morro do Pinheiro Seco, Lajes, Santa Catarina, Brazil, Reitz and Klein 15724 (US, holotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, less commonly on soil, rather brittle and often breaking apart when collected, 8–15 cm broad, yellowish green; lobes subirregular to sublinear, 1–2.5 mm wide, weakly convoluted at the tips, usually elongate, contiguous to crowded and imbricate, with some coarse subascending lobules; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, often with a weakly developed raised yellowish rim toward the tips, black, shiny, very sparsely rhizinate at the tips, sparsely rhizinate at the center, the rhinzes black, simple. 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia substipitate, 2–5 mm in diameter; spores 5–6 × 9–12 μm.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1985, fig. 4.

DISTRIBUTION.—Brazil, Uruguay, Paraguay, Argentina, Chile, South Africa (Cape Province).

COMMENTS.—This species is rather common in southern South America. Previously the name had been used for northern hemisphere populations in North America, now considered to be a distinct species, X. angustiphylla, which is more loosely adnate and has a more densely rhizinate lower surface without any marginal rim. The isidiate morph is X. catarinae.

Xanthoparmelia hyporhytida

Xanthoparmelia hyporhytida (Hale) Hale, 1974b:488.

Parmelia hyporhytida Hale, 1971a:349. [Type collection: N of Clanwilliam, Cape Province, South Africa, Kofler s.n. (L.D, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely attached on small pebbles or rarely free growing on soil, firm, 3–8 cm broad, yellowish green; lobes sublinear to linear, 1.5–4 mm wide, dichotomously branched, separate to subimbricate, subascending; upper surface continuous, emaculate to faintly white-maculate, isidia and soredia lacking; medulla white; lower surface plane,
black at the tips but usually becoming dark to light brown at the center, the cortex eroding, strongly reticulately rugose, sparsely rhizinate except near the lobe tips, the rhizines coarse, black, simple, 0.2-0.5 mm long. Pycnidia common; conidia bifusiform, 6-7 μm. Apothecia rare, subistipitate, 6-10 mm in diameter; spores 4-5 × 6-8 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, "chalybeizans" unknown (±).

ILLUSTRATION.—Hale, 1971a, fig. 3A.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—X. hypothyida is most commonly found on quartzite pebbles in the knersvlakte region ofNamaqualand. The lower surface is usually entirely black but a few specimens have a light brown area at the center. A sister species, X. walteri, the commonest lichen along the Namibian coast, is smaller with narrower lobes (0.5-1.5 mm wide), more distinct maculate, a more uniformly black lower surface, and contains only salazinic acid.

Xanthoparmelia ianthina

Xanthoparmelia ianthina Brusse in Knox and Brusse, 1983:152. [Type collection: Vanrhyn's Pass, 42 km NE of Vanrhynsdorp, Cape Prov., Republic of South Africa, Brusse 768-10-1-15 (PRE, holotype).]

DESCRIPTION.—Thallus adnate on rock, rather fragile, 3-8 cm broad, dull yellowish green; lobes subirregular, 0.7-1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla uniformly deep purple red; lower surface plane, shiny, pale brown, sparsely to moderately rhizinate, the rhizines pale, simple. 0.3-0.6 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6-7 μm. Apothecia common, subistipitate, 2-6 mm in diameter; spores 5-6 × 10-11 μm.

CHEMISTRY.—Unidentified anthraquinone pigments, two suspected, unidentified β-orcinol μ-depsides and usnic acid.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 8.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Near *X. endomitooides* and sharing with it the same brilliant anthraquinone pigments, this rare pigmented species lacks salazinic acid. This difference can only be detected with TLC, as the pigments obscure the results of spot tests in the medulla. It is known only from the sandstone escarpments above Namaqualand.

Xanthoparmelia idahoensis

Figure 44d

Xanthoparmelia idahoensis Hale, 1989a:547. [Type collection: On calcareous lacustrine ash soil, SE of Salmon, Lemhi County, Idaho, T 21 N, R 22 E, sect. 28, R. Rosentreter 3828, 4 Jan 1986 (US, holotype; Rosentreter herbarium, isotype).]

DESCRIPTION.—Thallus vagrant, free growing on soil, firm, breaking apart when collected, 2-4 cm broad, light yellowish green; lobes sublinear, 1.5-4 mm wide, contorted and twisted, the tips irregularly dilated and divided into suberete black-tipped laciniae ~0.5 mm wide, separate; upper surface strongly white-maculate, shiny, soredia and isidia lacking; medulla white; lower surface irregularly canaliculate with a raised rim, pale yellowish brown or turning brown toward the tips, foveolate-rugose, very sparsely rhizinate, the rhizines brown, coarse, 0.2-0.3 mm long, simple. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, protocetraric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 12.

DISTRIBUTION.—Western USA.

COMMENTS.—This rare soil lichen with contorted lobes is unique in the genus. At first glance it seems more like a terricolous *Evernia* than a *Xanthoparmelia*. The generic position remains tentative, although I was able to find epicorticate pores (lacking in *Evernia*) with the scanning electron microscope.

Xanthoparmelia imbricata

Figure 44e

Xanthoparmelia imbricata Hale, 1989a:547. [Type collection: On sheltered dolerite ledges on hillside, 56.1 km N of Mapholotang on Sani Pass-Moteng Pass road, elev. ca. 3000 m, Lesotho, Grid 2828 DD, Hale 81541, 7 May 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, subpulvinate, rather fragile and breaking apart, 8-10 cm broad, light yellowish green; lobes subirregular, 1-2 mm wide, short with digitate-laciniate branched tips, the tips black rimmed and often suberete and weakly suberete, strongly imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, dark brown at the tips with a yellowish rim, blackening at the center, very sparsely rhizinate, the rhizines black, simple, 0.4-0.8 mm long. Pycnidia numerous; conidia subfusiform, 0.5 × 5-6 μm. Apothecia lacking.

CHEMISTRY.—Fatty "subdecipiens" unknowns 33 and 37 (major), constipatic (±trace), protoconstipatic (±trace), and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 13.

DISTRIBUTION.—Lesotho.

COMMENTS.—The digitate-laciniate lobes and chemistry set this species apart from other fatty acid-containing species with a black lower surface. It is known only from high elevation dolerite ledges in Lesotho.

Xanthoparmelia immutata

Xanthoparmelia immutata Elix and Johnston in Elix, Johnston, and Armstrong, 1986:266. [Type collection: 3 km S of Barrow Creek along Stuart Highway, N.T., Australia, Elix 11209 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 2-8 cm broad, dark yellowish green; lobes sublinear, 0.2-1 mm wide,
short, crowded, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia initially subglobose, cylindrical at maturity, 0.06–0.12 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, blackening, becoming branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.1–0.4 mm long. Pycnidia lacking. Apothecia rare, adnate, about 1 mm in diameter; spores 5–6 × 10–11 μm.

Chemistry.—Scabrosin 4-acetate-4′-hexanoate, scabrosin 4-acetate-4′-butyrate, scabrosin 4,4′-dibutyrate, scabrosin 4,4′-diacetate (±), consalazinic, protoconstipatic, and usnic acid.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 23.

Distribution.—Australia (Qld, SA, NT).

Comments.—This rare Australian species appears to be related to *X. remarans*, a larger species (lobes 1.5–2.5 mm wide) which lacks fatty acids and has globulous emaculate isidia, and to *X. noneagens*, which has cylindrical isidia and lacks the fatty acids.

Xanthoparmelia incerta

Xanthoparmelia incerta (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:268.

Parmelia incerta Kurokawa and Filson, 1975:39. [Type collection: Warren Gorge, Lower Flinders Range, S.A., Australia, Curtis 7 (MEL, holotype).]

Description.—Thallus adnate to tightly adnate on rock, 3–5 cm broad, yellowish green; lobes subirregular, 1–2.5 mm wide, crowded and imbricate, often black rimmed; upper surface continuous, emaculate, dull, rugulose with age isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines brown to black, coarse, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–8 mm in diameter; spores 5–7 × 7–11 μm.

Chemistry.—Salazinic, consalazinic, constipatic (±), 4-O-methylhypophorotectaric (±trate), and usnic acids.

Illustration.—Kurokawa and Filson, 1975, pl. 2: fig. 1.

Distribution.—Australia (Qld, Vic, Tas, SA, NT, WA), New Zealand, Papua New Guinea, South Africa (Cape Province).

Comments.—*X. incerta* could be confused with another Australian species, *X. parvoincerta*, which has narrower, more sublinear lobes.

Xanthoparmelia inconspicua

Xanthoparmelia inconspicua Hale, 1987a:256. [Type collection: On west side of hwy R43, 17.4 km N of N2, N of Floorsporte, elev. 350 m, Cape Province, South Africa, Grid 3419 AB, *Hale* 78197, 26 Oct 1986 (US, holotype; PRE, isotype).]

Parmelia tantillum [sic] Brusse, 1989a:403. [Nomen novum based on *Xanthoparmelia inconspicua* Hale.]

Description.—Thallus very tightly adnate on rock, 3–5 cm broad, dull yellowish green; lobes sublinear, 0.3–0.6 mm wide, little branched, 1.5–2 mm long, separate to contiguous, isidia and soredia lacking; upper medulla white, lower medulla rusty red in older parts; lower surface plane, the cortex thin and fragile, brown, moderately rhizinate, the rhizines delicate, brownish translucent, simple, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

Chemistry.—Hypostictic, hyposalazinic, hypoconstipatic, and usnic acids, unidentified dull reddish pigments.

Illustration.—Hale, 1987a, fig. 8.

Distribution.—South Africa (Cape Province).

Comments.—This rare species has no obvious relatives among the tightly adnate members of the genus. Not only is the hypostictic acid group ("quintaria unknowns") unusual here but the fragile, thin lower cortex with translucent rhizines is distinctive. The pigment is scattered mostly in the lower medullary area. The number of the type was given incorrectly as Hale 78097.

Xanthoparmelia incrustata

Figure 44f

Xanthoparmelia incrustata (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:269.

Parmelia incrustata Kurokawa and Filson, 1975:39. [Type collection: Wallaby Range, 21 km N of Kingoonya, S.A., Australia, Filson 11958 (MEL, holotype).]

Description.—Thallus tightly adnate to adnate on rock or pebbles, 2–6 cm broad; lobes subirregular to sublinear, 0.6–2 mm wide, imbricate, secondary ones towards the margins and the center becoming weakly canaliculate with a weakly developed marginal rim; upper surface continuous, emaculate, shiny, becoming cracked and rugulose at the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, darkening toward the margins, sparsely to moderately rhizinate, the rhizines pale brown, stout, simple, 0.2–0.4 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, substipitate, 2–4 mm in diameter; spores 5–6 × 10–12 μm.

Chemistry.—Nortobaridine, ixodin, scabrosin 4,4′-dibutyrate (±), scabrosin 4-acetate-4′-butyrate (±), scabrosin 4-acetate-4′-hexanoate (±), and usnic acid.

Illustration.—Kurokawa and Filson, 1975, pl. 2: fig. 2.

Distribution.—Australia (SA, WA).

Comments.—This species may be related to *X. filarszkyana*, but it differs in having well-developed, convex secondary lobes. The accessory scabrosin derivatives occur only rarely in this species.

Xanthoparmelia indumenica

Figure 45a

Xanthoparmelia indumenica Hale, 1986b:580. [Type collection: trail to Indumeni Forest/Rainbow Gorge, Cathedral Peak, elev. 1600 m, Natal, South Africa, Grid 2829 CC, *Hale* 75107, 22 Feb 1986 (US, holotype; PRE, isotype).]
DESCRIPTION.—Thallus tightly adnate to adnate on rock, 4–5 cm broad, yellowish green but becoming darker green toward the center; lobes sublinear, 0.5–1.5 mm wide, rather short, contiguous, sparsely short lobulate-laciniate along the margins; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, rather coarse, simple, 0.1–0.3 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia numerous, adnate, 0.6–1 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Stictic (major), diffractaic (major), constictic, cryptocistic, norstictic (trace), and usnic acids (det. C. Culberson and A. Johnson).

ILLUSTRATION.—Hale, 1986b, fig. 23.

DISTRIBUTION.—South Africa (Natal).

COMMENTS.—This inconspicuous lichen known from three localities in the moist foothills of the Natal Drakensbergs has an unusual in chemistry, this combination of acids being only known here.

Xanthoparmelia inflata

Figure 45b

Xanthoparmelia inflata Hale, 1989a:549. [Type collection: On small dolerite boulders on S-facing slope, east side of Kowiephola Pass, 11.3 km NW of Sani Pass, elev. 3200 m, Lesotho, G Yıl 2929 CB, Hale 81531, 6 May 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather leathery and appearing inflated, 5–10 cm broad, light yellowish green; lobes broadly sublinear, 2–3 mm wide, little branched, separate to contigious; upper surface continuous, emaculate, dull, rugose at the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, densely rhizinate, the rhizines pale brown, simple to sparsely fuscately branched, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 6–7 μm. Apothecia well developed; substipitate, 3–7 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 14.

DISTRIBUTION.—Lesotho.

COMMENTS.—Xanthoparmelia inflata represents another member of the hypoprotocetraric acid-containing X. prodromokosii group. The diagnostic features of this species are the high elevation habitat and the puffy, little branched lobes. During the long winter season the plants are shaded and covered with hoarfrost or snow.

Xanthoparmelia iniqua

Xanthoparmelia iniqua Hale and Johnston in Elix, Johnston, and Armstrong, 1986:270. [Type collection: 25 km WSW of Grenfell, Weddin State Forest, NSW, Australia, Elix 4781 (CBG, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, 4–8 cm broad, light yellowish green; lobes sublinear, 1–2 mm wide, more or less separate to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.4–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–8 mm in diameter; spores 5–6 × 8–9 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, protocetraric (trace), and usnic acids.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic), South Africa (Cape Province).

COMMENTS.—Another Australian species, X. pertinax, has the same chemistry but is adnate on rock. The American X. monticola is a somewhat smaller plant with physodic and constipatic acids as additional metabolites.

Xanthoparmelia isidiascens

DESCRIPTION.—Thallus tightly adnate on rock, 2–5 cm broad, dull to rather dark yellowish green; lobes sublinear, 0.2–0.7 mm wide, delicate, elongate and sparingly dichotomously branched, contiguous to subimbricate, irregularly constricted, black-rimmed; upper surface continuous, emaculate, shiny, weakly rugulose and transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, simple, 0.1–0.3 mm long. Pycnidia lacking. Apothecia poorly developed, adnate, 0.3–0.8 mm in diameter; spores not found.

CHEMISTRY.—Fatty “subdecipiens” unknowns 33 and 37, constipatic (trace), and usnic acids.

ILLUSTRATION.—Brusse, 1986, fig. 5.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This is the only tightly adnate representative of the fatty acid-containing species with a black lower surface. Xanthoparmelia subnigra, for example, is much larger with lobes 1–2 mm wide. This species, in fact, has among the narrowest lobes so far found in the genus. It is known from four localities in southern Cape Province.

Xanthoparmelia isidiascens

Figure 45c

Xanthoparmelia isidiascens Hale, 1984:73. [Type collection: Near Blake’s Ferry, Randolph Co., Alabama, McVaugh 4588 (US, holotype).]
DESCRIPTION.—Thallus loosely adnate on rock, rather fragile, 6–13 cm broad, dull yellowish green; lobes sublinear, 1.5–4 mm wide, elongate and more or less separate to imbricate; upper surface continuous to faintly white—maculate or minutely reticulate foveolate at the tips, shiny, sparsely to moderately isidiate, the isidia cylindrical (Figure 15b), 0.08–0.15 mm in diameter, 0.1–0.4 mm high, the tips syncorticate, black, branching with age; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, coarse, simple, 0.5–1 mm long. Pyclnidia rare; conidia bifusiform, 0.5 × 5–6 μm. Apothecia substipitate, 2–6 mm in diameter; spores 5–6 × 7–9 μm.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1984, fig. 2.

DISTRIBUTION.—Southeastern USA.

COMMENTS.—Previously this American endemic was lumped with X. conspersa, but the lobes are sublinear and the thallus quite loosely adnate. It is especially common on the granite flats in the state of Georgia.

Xanthoparmelia isidiigera

Figure 45d

Parmelia conspersa var. laxa f. isidia Müller Argoviensis, 1883:48. [Type collection: King Georges Sound, Australia, Harris 52 (G, lectotype).] Parmelia isidiigera (Müller Argoviensis) Gyelnik, 1935:27.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely on wood, bristle, 4–8 cm broad, dull yellowish green; lobes subirregular to sublinear, 1.5–2.5 mm wide, contiguous to imbricate; upper surface continuous to faintly white—matulate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 15i), thin, 0.04–0.08 mm in diameter, 0.1–0.8 mm high, the tips syncorticate, darkening, mostly unbranched; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, coarse, 0.3–0.8 mm long. Pyclnidia common; conidia cylindrical to bifusiform, 0.5 × 4–6 μm. Apothecia rare, substipitate, 2–6 mm in diameter; spores 5–7 × 9 μm.

CHEMISTRY.—Salazinic, consalazinic, protocetraric (trace), norstictic (±trace), ussolic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 25.

DISTRIBUTION.—Australia (all states), New Zealand, Papua New Guinea, Peru, South Africa (Cape Province).

COMMENTS.—This common species is close to X. australasica but with much thinner isidia and a more adnate thallus.

Xanthoparmelia isidiosa

Figure 45e

Parmelia conspersa var. stenophylla f. isidia Müller Argoviensis, 1892a:193. [Type collection: Everard Ranges, Australia, Helms 92 (G, lectotype).]

Imbricaria conspersa * isidia (Müller Argoviensis) Jatta, 1902:470.

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–7 cm broad, dark yellowish green; lobes subirregular, 0.8–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugulose toward the center, moderately isidiate, the isidia globose (Figure 16a), 0.08–0.15 mm in diameter, 0.1–0.5 mm high, the tips syncorticate to epicorticate, darkening, erumpent and at length pustulate but not sorediate, mostly unbranched; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black simple, 0.2–0.5 mm long. Pyclnidia lacking. Apothecia rare, substipitate, 2–6 mm in diameter; spores 4–6 × 9–10 μm.

CHEMISTRY.—Salazinic (major), consalazinic, protocetraric (±trace), norstictic (±trace) and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 3: fig. 3 (as Parmelia refringens).

DISTRIBUTION.—Australia (Qld, NSW, Tas, SA, NT, WA).

COMMENTS.—The tightly adnate thallus and black lower surface of this desert lichen recall the South African X. geesterani, which has smaller lobes (0.7–1.1 mm wide) and more clearly erumpent, apically epicorticate isidia.

Xanthoparmelia joranadai

Figure 45f

Parmelia joranadai Nash, 1974a:72. [Type collection: 40 km N of Las Caces, Joranada Experiment Station, New Mexico State University, Dona Ana Co., New Mexico, USA, Nash 7897 (ASU, holotype; COLO, DUKE, MIN, US, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 3–8 cm broad, light yellowish green; lobes subirregular, 1–2.5 mm wide, contiguous to imbricate and crowded; upper surface continuous, emaculate, shiny to dull, rugulose, sparsely to moderately isidiate, the isidia at first globose (Figure 16b), cylindrical to irregularly inflated at maturity, 0.1–0.2 mm in diameter, 0.2–0.4 mm high, the tips weakly epicorticate, darkening, mostly unbranched; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale, simple, 0.2–0.5 mm long. Pyclnidia and apothecia lacking.

CHEMISTRY.—Lecanoric and usnic acids.

ILLUSTRATION.—Nash, 1974a, fig. 1.

DISTRIBUTION.—Western North America.

COMMENTS.—This rare lichen is most closely related to nonisidiate X. arida.

Xanthoparmelia kalbii

Figure 46a

Xanthoparmelia kalbii Hale, 1984:74. [Type collection: Catimbai-Pe, Pernambuco, Brazil, Xavier 754 (US, holotype).]
DESCRIPTION.—Thallus adnate on rock, fragile, 3–4 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia globose (Figure 16c), 0.08–0.12 mm in diameter, 0.1–0.2 mm high, the tips becoming epicorticate, eroding and erumpent, esorediate, unbranched; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, simple or furcate, 0.2–0.6 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rare, subtipitate, 1–2 mm in diameter; spores 6 × 10–11 μm.

CHEMISTRY.—Hypostictic, hyposalazinic, hypoconostictic, and usnic acids.

ILLUSTRATION.—Hale, 1984, figs. 3, 4.

DISTRIBUTION.—Brazil.

COMMENTS.—Only two other isidiate species contain the hypostictic acid complex: X. gongyliodes from Australia, a larger lichen with mostly cylindrical, sparsely erumpent isidia, and X. harrisi from Namibia, a mostly dark brown lichen with coarse isidia. Xanthoparmelia kalbii is known from two collections in semi-arid northeastern Brazil.

Xanthoparmelia karoo

FIGURE 46b

Xanthoparmelia karoo Knox and Brusse, 1983:154. [Type collection: Klipfonteinrand, 32 km NE of Clanwilliam, Cape Prov., Republic of South Africa, Brusse 768-10-3-7 (f, holotype).]

Xanthoparmelia karoo (Knox and Brusse) Brusse, 1984:321.

DESCRIPTION.—Thallus adnate on rock, firm, 3–6 cm broad, yellowish green; lobes subirregular, 1.2–2 mm wide, short and irregularly branched, imbricate; surface effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, rather coarse, unbranched, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–8 μm. Apothecia subtipitate, 2–5 mm in diameter; spores 4–6 × 8–13 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-methylhypoprotocetraric, and usnic acids.

ILLUSTRATION.—K Knox and Brusse, 1983, fig. 9.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This Namaqualand species is closely related to *X. hypoprotocetrarica*, a loosely adnate, sublinear-lobed lichen, because of the effigurate-maculate surface and identical chemistry.

Xanthoparmelia karooensis

FIGURE 46c

Xanthoparmelia karooensis Hale, 1986b:582. [Type collection: 8 km S of Lainsburg on Hwy R323, elev. 700 m, Cape Province, South Africa, Grid 3320 BB, 30 Jan 1986, Hale 75102 (US, holotype; LD, PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, 4–7 cm broad, yellowish green; lobes subirregular, short, 0.8–1.5 mm wide, contiguous, becoming crowded and bullate at the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla ochre; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, up to 0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia numerous, adnate, 2–3 mm in diameter; spores 6 × 9 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids, skyрин and several unidentified minor components.

ILLUSTRATION.—Hale, 1986b, fig. 24.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This is the only tightly adnate species in the genus with hypoprotocetraric acid and skyrin. It occurs over a wide area in Namaqualand and southwestern Cape Province. *Xanthoparmelia subdomokosii* has the same chemistry but is much larger and loosely adnate.

Xanthoparmelia kasachstanica, new species

FIGURE 46d

Thallus vagans, terricola, coriaceus, 4–8 cm latus, lobis sublinearibus, 1.5–6 mm latis, valde convolutis, superne albo-maculatus, soredis isidisque estatutus. Pycnidia atque apothecia ignota.

DESCRIPTION.—Thallus free growing on soil, leathery, forming more or less discrete rosettes 4–8 cm broad, yellowish green; lobes sublinear, 1.5–6 mm wide, strongly convoluted but with some of the lower surface visible, dichotomously branched, separate to subimbricate; upper surface white-maculate, shiny, reticulately cracked with age, soredia and isidia lacking; medulla white; lower surface plane, pale brown but darkening at the tips, smooth to weakly foveolate, moderately to densely rhizinate, the rhizines pale brown, simple, thin, 0.2–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic, connorstictic, and usnic acids.

TYPE COLLECTION.—Kuczum, Lake Zaysan, Kazakhstan orientalis, USSR, Gonczarov and Borisova, no. 46c in Savicz, Lichenotheca Rossica (US, holotype; KW, isotype).

DISTRIBUTION.—USSR.

COMMENTS.—This white-maculate soil lichen is virtually indistinguishable from the far more common and widespread *X. camtschadalis*, which has coarse, sparse to moderate rhizines and contains salazinic acid. Parallel production of salazinic acid and norstictic acid is also known in the vicariant species *X. chlorochroa*- *X. neochlorochroa* from western North America and *X. convoluta*- *X. norconvoluta* from Australia.

Xanthoparmelia keralensis

Xanthoparmelia keralensis Hale, 1985a:282. [Type collection: 45 km from Munnar on the Munnar-Kodaikanal road, Kerala, India, elev. 1900 m, Hale 46480, 24 Jan 1976 (US, holotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, 4–8
cm wide, dark yellowish green; lobes sublinear, 0.2-0.5 mm wide, short, contiguous to subimbricate, black rimmed; upper surface shiny, continuous, emaculate, sparsely isidiate, isidia cylindrical (Figure 16d), 0.05-0.08 mm in diameter, 0.08-0.12 mm high, the tips syncoricate, black, unbranched; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, simple, 0.1-0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stenosporonic (major), colenoic (minor), norcolenoic (trace), divaronic (trace), gyrophoric (trace), and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Hale, 1985a, fig. 5.

DISTRIBUTION.—South Africa (Natal).

COMMENTS.—X. keralensis is one of the few Xanthoparmeliae found in both India and Africa. In South Africa it occurs in the moist foothills of the Natal Drakensbergs and in a similar habitat in the Palni Mountains in India. The nonisidiate parent morph, X. stenosporonica, occurs only in South Africa.

Xanthoparmelia khomasiana

* [*Xanthoparmelia* khomasiana* Hale, 1989a:549. [Type collection: Khomas Highlands, 47 km W of Windhock on Hwy R56, 3.4 km W of Neu Heusis, SWA/Namibia, Grid 2216 DA, Hale 80955, 25 Apr 1988 (US, holotype: PRE, isotype).]]

DESCRIPTION.—Thallus very tightly adnate on rock, 3-4 cm broad, dull yellowish green; lobes subirregular, 0.3-0.7 mm wide, short and irregularly branched, contiguous to subimbricate; upper surface continuous, emaculate, shiny, sparsely isidiate, the isidia subglobose (Figure 16e), 0.2 mm in diameter, to 0.2 mm high, the tips epicoricate, pale, hollow, pustular and erupting but without forming soredia; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, fragile, unbranched, 0.1-0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hydroporotocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 15.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This species is related to *X. weberi* but has a very tightly adnate thallus and unusually large globose isidia. Known from two collections in the arid Khomas highlands west of Windhoek, it occurs with *Sublumixuloides* (norlobaridone present) and *X. weberi*. All of them grow on the lower surface of low tilted rock strata.

Xanthoparmelia kibensis

* [*Xanthoparmelia* kibensis* (Dodge) Krog and Swinscow, 1987:428.]*

Hypogymnia kiboensis Dodge, 1959:50. [Type collection: Between saddle and Kibo, Mt. Kilimanjaro, Tanzania, Verdcourt and Wilkinson 1228 (FH-Dodge, lectotype; holotype in EA not located [Krog and Swinscow, 1987]).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 3-4 cm broad, dark yellow-green; lobes subirregular to sublinear, 1-2 mm wide, irregularly branched with somewhat dissected, black-rimmed margins, imbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, soredia and isidia lacking; medulla white; lower surface plane, dark brown at the margins to black at the center, becoming strongly rugose, dull with a velvety texture, moderately to densely rhizinate, the rhizines dark brown to black, coarse, 0.3-0.6 mm long, simple or apically splayed. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic (major), salazinic (trace), and usnic acids.

DISTRIBUTION.—Tanzania.

COMMENTS.—Although the designated holotype in EA has not been found (Krog, personal communication), a duplicate specimen in FH-Dodge can be used as the lectotype. Dodge regarded this rhizinate, nonisidiate species as a Hypogymnia but it is clearly a Xanthoparmelia, distinguished by the dull rugose lower surface and norstictic acid as the major component, a rare trait in African species. It is known from the single type collection. *Xanthoparmelia sakikiboensis*, a common species at the same locality, has a shiny lower surface and salazinic acid as the major metabolite.

Xanthoparmelia kotisephola

* [*Xanthoparmelia kotisephola* Hale, 1989a:549. [Type collection: On grassy humus in pasture, summit of Kotisephola Pass, 13.8 km NW of Sani Pass, elev. 3240 m, Lesotho, Grid 2329 CA, Hale 79519, 5 May 1988 (US, holotype: ANUC, ASU, LD, PRE (isotypes).]]

DESCRIPTION.—Thallus loosely adnate to mostly free growing and scattered on humus and soil, remaining mostly intact or fragmenting, firm and leathery, somewhat pulvinate, 4-12 cm broad, yellowish green or darkening; lobes sublinear, 1-3 mm wide, moderately to strongly convoluted, irregularly branched, separate to contiguous; upper surface continuous, emaculate, shiny, irregularly cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown but darkening toward the tips, densely rhizinate, the rhizines brown or darkening, rather coarse and often projecting as a dense mat from below, simple, 0.5-1 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 x 5-6 µm. Apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, norstictic (trace), protocetraric (trace), and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Hale, 1989a, fig. 16.

DISTRIBUTION.—Lesotho.

COMMENTS.—This convoluted species occurs in the dolerite
highlands of Lesotho, widely scattered among mats of short grasses. It is distinguished from the American X. chlorochroa by the dense mat of dark rhizines below.

Xanthoparmelia krogiae

Figure 47a

Xanthoparmelia krogiae Hale and Elix in Hale, 1988b:403.
Pseudoparmelia endochromatica Krog and Swinscow, 1987:421.

Description.—Thallus adnate on rock, 5–8 cm broad, yellowish green; lobes subirregular, 1–3 mm wide, short and irregularly branched with rotund tips, subimbicrate; upper surface continuous to faintly white-maculate, shiny, moderately isidiate, the isidia cylindrical (Figure 16f), 0.06–0.09 mm in diameter, to 0.3 mm high, the tips pale, syncorticate, sparsely branched; medulla uniformly pale salmon yellow; lower surface plane, brown, shiny, moderately rhizinate, the rhizines pale brown to brown, simple, 0.5–1 mm long. Pycnidia and apothecia lacking.

Chemistry.—Fatty “subdecipiens” unknowns 33 and 37 (major), constipatic (±trace), protoconstipatic (±trace), and usnic acids, “schenckiana” pigment.

Illustration.—Hale, 1987a, fig. 9.

Distribution.—South Africa (Natal).

Comments.—No other species with the “subdecipiens” constipatic acid complex have such narrow sublinear lobes or the unidentified anthraquinone which I have called the schenckiana unknown (first found in X. schenckiana). The pigment is usually not seen since it occurs in older decomposing parts of the thallus. It is known only from the type collection in the moist Drakensberg foothills. The number of the type collection was given incorrectly as Hale 76668 in the original publication.

Xanthoparmelia lagunebergensis

Figure 47c

Xanthoparmelia lagunebergensis Hale, 1986b:582. [Type collection: Laguneberg Mountains, NE of Mile 72, Distr. Oumaruni, SWA/Namibia, Grid 2114 CC, Hale 75101, 8 Jan 1986 (US, holotype; PRE, isotype).]

Description.—Thallus tightly adnate on rock, light yellowish green, 2–4 cm broad; lobes sublinear, 0.5–1 mm wide, appearing somewhat inflated, separate to contiguous; upper surface continuous, emaculate, dull, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, very pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

Chemistry.—Protocetraric and usnic acids.

Illustration.—Hale, 1986b, fig. 25.

Distribution.—SWA/Namibia.

Comments.—This Namibian endemic is externally close to *X. serusiauxii* but has a pale lower surface, a completely different chemistry, and lacks a black rim around the lobe margins. It is the rarest member of this group of Namib coastal fog zone species.

Xanthoparmelia latilobata

Figure 47d

Xanthoparmelia latilobata Hale, 1987a:258. [Type collection: 4.1 km NE of Dordrecht, elev. 1700 m, Cape Province, South Africa, Grid 3127 AC, Hale 73202, 9 Feb 1986 (US, holotype; ANUC, LD, PRE, isotypes).]

Description.—Thallus adnate to loosely adnate on soil and rock, firm and leathery, 6–10 cm broad, bright yellow green; lobes subirregular to broadly sublinear, apically rotund, 3–8 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, dull, dark brown in a broad zone at the tips but blackening at the center, finely rugulose, variably

Figure 47.—Species of *Xanthoparmelia: a, X. krogiae* (Hildebrandt s.n. in M); b, *X. latilobata* (Hale 76648, holotype in US); c, *X. lagunebergensis* (Hale 75101, holotype in US); d, *X. latilobata* (Hale 73202, holotype in US); e, *X. latilobata* (Hale 76648, holotype in US). Scale in mm.
rhizinate, sparse to dense, the rhizines coarse, simple, black, 1–2 mm long. Pycnidia present but conidia not developed. Apothecia abundantly produced, substipitate, 2–5 mm in diameter; spores 6–7 × 12–13 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 10.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species of the Cave sandstone formation in eastern Cape Province is distinguished by the broad, bright yellow-green lobes. It may be allied to *X. tasmanica*, which has narrow sublinear lobes 2–5 mm wide. *Xanthoparmelia crassilobata* is very close in lobe configuration but is primarily a soil lichen and has a brown lower surface.

Xanthoparmelia lavicola

Figure 47a

Xanthoparmelia lavicola (Gyelnik) Hale, 1988b:404.

Parmelia lavicola Gyelnik, 1953c:157. [Type collection: La Estrella, environs of Mexico, Mexico, *Amable 600* (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia kurokawae Hale, 1967:418. [Type collection: 2.5 mi E of Piedmont Butte, Meade Co., South Dakota, USA, *Weinmore 10360b* (MSC, holotype; ZT, isotype).]

Xanthoparmelia kurokawae (Hale) Hale, 1974b:488.

DESCRIPTION.—Thallus adnate on rock, 5–7 cm broad, light yellowish green or darkening; lobes subirregular, 1.5–4 mm wide, contiguous to imbricate; upper surface continuous, emaculate, moderately to densely isidiate, the isidia initially globose to subcylindrical and irregularly inflated at maturity (Figure 16g), 0.07–0.1 mm in diameter, 0.1–0.5 mm high, the tips weakly to strongly epicorticate, brownish, more or less erumpent, unbranched to sparsely branched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Psoromic, 2'-O-demethylpsoromic, and usnic acids.

ILLUSTRATION.—Hale, 1967, fig. 5.

DISTRIBUTION.—Western North America, Mexico, Ecuador.

COMMENTS.—A chemically unusual species because of the presence of psoromic acid, *X. lavicola* may be the isidiate morphotype of *X. psoromifera*. A related species in southern Africa, *X. afrolinicola*, has tall, cylindrical isidia which are not erumpent.

Xanthoparmelia laxencrustans

Figure 47f

DESCRIPTION.—Thallus tightly adnate on rock, 2–4 cm broad, yellowish green; lobes sublinear to subirregular, 0.7–1.5 mm wide short, contiguous to imbricate and crowded at the center; upper surface continuous, emaculate, shiny, subrugulose, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–5 μm. Apothecia common, adnate, 1–4 mm in diameter; spores 4–5 × 7–9 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic (±trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 26.

DISTRIBUTION.—Australia (SA, NT), South Africa (Cape Province).

COMMENTS.—This lichen occurs in extremely arid central Australia. It is closely related to *X. promelothyphila*, which is adnate with wider lobes. Elix and Johnston chose as the type one of the three synonyms of *Parmelia conspersa* var. *stenophylloides*.

Xanthoparmelia lecanorica

Figure 48a

Xanthoparmelia lecanorica (Hale) Hale, 1974b:488.

DESCRIPTION.—Thallus adnate on rock, 3–5 cm broad, yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny to dull, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, dark brown to black, moderately rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–5 mm in diameter; spores 5 × 9–10 μm.

CHEMISTRY.—Lecanoric and usnic acids.

ILLUSTRATION.—Hale, 1971a, fig. 3B.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—There is only one other lecanoric acid-containing species with a black lower surface, *X. namaquensis*, which is a larger, loosely adnate species also found in Namaqualand. The original report of *X. lecanorica* from North America was incorrect; the American material (as well as some specimens from Namaqualand) is *X. arida* (Egan and Derstine, 1978).

Xanthoparmelia leonora

Figure 48b

Parmelia leonora Sprengel ex Massalongo, 1861:51.

Parmelia leonora var. *platyphylla* Flo出 ex Massalongo, 1861:51 [= *P. leonora* var. *leonora*]. [Type collection: Cape of Good Hope, South Africa, *Wawra s.n.* (VER, specimen "B" (as *P. australis* var. *platyphylla*), lectotype; ZT, islectotype).]

Parmelia leonora var. *multifida* Flo出 ex Massalongo, 1861:51. [Type collection: Cape of Good Hope, South Africa, *Wawra s.n.* (VER, specimen "A" (as *P. australis* var. *stenophylla*), lectotype; ZT, islectotype).]

Xanthoparmelia acida Knox and Hale in Hale, 1986b:564. [Type collection: Ceres Nature Reserve at Mitchells Pass, about 1.5 km SW of Ceres on Hwy
DESCRIPTION.—Thallus loosely attached to nearly free-growing on sandy soil, pebbles or soil over rocks, forming discrete orbicular colonies 5–10 cm broad, firm, somewhat darkish greenish yellow; lobes sublinear, quite variable, 1–4 mm wide, weakly to distinctly convoluted, dichotomously branched, separate to subimbricate, rarely with short laciniate lobe tips; upper surface weakly to moderately white-maculate, shiny, isidia and soreidia lacking; medulla white; lower surface plane, pale brown to darker brown, moderately to densely rhisizate, the rhizines fine, brown or blackening, especially at lobe tips, 0.5–1.2 mm long, simple to fuscate. Pycnidia rare; conidia bifusiform, 0.5 × 5–6 µm. Apothecia rather rare, adnate to subtiriminate, 2–5 mm in diameter; spores poorly developed, 6 × 9 µm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric (±), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 1.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This rather common South African species is distinguished by the weakly convoluted lobes, uniformly dispersed rhizines, and chemistry. It is best developed on sheltered sandy soil in sparsely vegetated pastures and on open sandstone outcrops in the Little Karoo and southern parts of the Great Karoo. Some specimens contain only fumarprotocetraric acid. It is closely related to X. phaeophana, an extremely common saxicolous species with more distinct white maculae, broader, somewhat ascending lobes, and sparse rhizines interspersed with large bare areas on the lower surface.

The final typification of Massalongo’s P. leonora, the earliest name for this lichen (see also the discussion under X. concolor), was relatively complicated. Massalongo took up the herbarium name P. leonora Sprengel (initially labeled as Parmelia australis in his herbarium and in the figure legend in Lichenese Capenses), a herbarium name which had been invalidly published by Flotow, gave it a Latin description, and included under it two varieties, var. platyphyllophora and var. multifida, both based on Wawra collections from the Cape and present in his herbarium at Verona. They are obviously the models for the color drawings in Lichenese Capenses. I consider var. platyphyllophora to be var. leonora. Variety multifida is a somewhat smaller plant but otherwise morphologically identical and with the same chemistry.

Xanthoparmelia leucoasteria

FIGURE 48c

Xanthoparmelia leucoasteria Hale, 1986b:582. [Type collection: Sani Pass, elev. 2875 m, Lesotho, Grid 2924 CB, *Hale* 74093, 17 Feb 1986 (US, holotype); LD, PRE, isotype].

Parmelia leucoasteria (Hale) Brasse, 1988:539.

DESCRIPTION.—Thallus adnate to tightly adnate on rock, leathery, 3–5 cm broad, dull yellowish green; lobes sublinear, 0.8–1.5 mm wide, short, dichotomously branched, black rimmed, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soreidia lacking; medulla white; lower surface plane, brown to dark brown, moderately to densely rhisizate, the rhizines coarse, brown, simple, 0.3–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 µm. Apothecia not seen.

CHEMISTRY.—Salazinic (major), diffractaic (major), barbatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 26.

DISTRIBUTION.—Lesotho.

COMMENTS.—This small, coriaceous lichen has no close relatives except X. brevilobata, which contains the hypostatic acid series. The combination of salazinic and diffractaic acids is unusual in Xanthoparmelia, otherwise known only in X. nana from Australia and X. diffractaica from southern Africa. It is a rare, high-elevation species in the basaltic Drakensberg escarpment.

Xanthoparmelia lineola

FIGURE 48d

Xanthoparmelia lineola (Berry) Hale, 1974b:488.

Parmelia lineola Berry, 1941:77. [Type collection: 3 mi NW of Ft. Defiance, Apache Co., Arizona, USA, *Hubrich* B1170 (US, holotype)].

Parmelia conspersa var. diffracta Mereschkowsky, 1920a:487. [Type collection: Southern Colorado, USA, s.c. (G, lectotype)].

Parmelia subcrustacea var. chalybae Gyelnik, 1938a:291. [Type collection: Heathcote, NSW, Australia, *Chel* s.n. (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed)].
Parmelia rimalis: Kurokawa in Kurokawa and Filson, 1975:43. [Type collection: Wilgena Hill, 6.4 km N of Kingoonya-Tarcoola road, 67.5 km W of Kingoonya, S.A., Australia, Filson 1192 (MEL, holotype; TNS, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–10 cm broad, yellowish green; lobes subirregular, 0.8–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale, rhizines moderate, pale, unbranched, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia well developed, subglobose, 2–5 mm in diameter; spores 6–7 × 9–12 μm.

CHEMISTRY.—Salazinic, consalazinic, constipatic (±), protoconstipatic (±), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 3: fig. 4 (as Parmelia rimalis).

DISTRIBUTION.—USA, Mexico, Australia (NSW, ACT, SA, NT, WA), New Zealand, South Africa (Cape Province).

COMMENTS.—There are few characters to highlight this common, pantemperate nonisidiate lichen, widespread in the western USA but also well represented in Australia and South Africa. In the western USA it is closely related to and intergrades with X. coloradoensis. Four additional species in North America seem to be chemotypes: X. arida (lecanoric acid), X. barbatica (barbatic acid), X. subdecipiens (constipatic acid series), and X. tucsonensis (daffratic acid). The Australian X. helarszkiana (norlorbaridone) falls in the same group. None of these species has been adequately studied in terms of distribution and habitat, however.

Xanthoparmelia lipochlorochroa

FIGURE 48e

DESCRIPTION.—Thallus vagrant, free growing on soil, leafy, breaking apart into smaller colonies 3–5 cm broad, light yellowish green; lobes sublinear, 2–5 mm wide (to 10 mm when unrolled), strongly convoluted and tube-like, sparsely branched, separate; upper surface continuous, emaculate, shiny to mostly dull, transversely cracked and rugose with age, soredia and isidia lacking; medulla white; lower surface plane, smooth to foveolate-ridged, little of the lower surface visible, light brown or darkening, sparsely rhizinate, the rhizines brown, delicate, 0.3–0.6 mm long, simple. Pycnidia and apothecia lacking.

CHEMISTRY.—Traces of unidentified fatty acids, usnic acid.

ILLUSTRATION.—Hale, 1989a, fig. 17.

DISTRIBUTION.—Western USA.

COMMENTS.—This is a rare fatty acid chemotype of X. chlorochroa, a common western North American vagrant lichen with salazinic acid. The exsiccate specimens (no. 29) of the type are mixed with X. chlorochroa. The correct number of the type is Buckingham 22115, not 22115 as given in the original publication.

Xanthoparmelia lobulifera

FIGURE 48f

Xanthoparmelia lobulifera Hale, 1986b:584. [Type collection: 37.4 km NW of Queenstown along Hwy R30, elev. ca. 1600 m, Cape Province, South Africa, Grid 3126 AC, Hale 72025, 8 Feb 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, firm, 5–8 cm broad, bright yellow green; lobes sublinear, 0.6–1 mm wide, imbricate and congested, branching into narrow secondary lobes 0.4–0.6 mm wide, appressed to subascending; upper surface continuous, emaculate, dull to shiny, convex, rugose and transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane to slightly grooved, black, dull, rhizines lacking. Pycnidia and apothecia lacking.

CHEMISTRY.—Sestic, consticatic, and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 28.

DISTRIBUTION.—South Africa (Cape Province, Transvaal).

COMMENTS.—There seem to be no close relatives for this rare lichen. The black lower surface without rhizines and the leafy, crowded lobes are distinctive.

Xanthoparmelia louisi

FIGURE 49a

Xanthoparmelia louisi Elix and Johnston in Elix, Johnston, and Armstrong, 1986:279. [Type collection: Bluff Knoll, Stirling Ranges, W.A., Australia, Elix 10661 (CBG, holotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, 1–3 cm broad, coalescing, dark yellowish green; lobes sublinear, 0.2–0.5 mm wide, dichotomously branched, weakly constricted, black-rimmed, contiguous, sparsely marginally laciniate; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, dark brown to black, moderately rhizinate, the rhizines brown to blackish, simple, 0.1–0.2 mm long. Pycnidia common; conidia cylindrical to subbifusiform, 0.5 × 7–8 μm. Apothecia adnate, 0.5–1 mm in diameter; spores 5–7 × 8–10 μm.

CHEMISTRY.—Barbatic (major), 4-O-demethylbarbatic (trace), squamatic (trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 27.

DISTRIBUTION.—Australia (WA).

COMMENTS.—This rare western Australian lichen is charac-
terized by the tightly adnate thallus, narrow lobes, and chemistry.

Xanthoparmelia luderitziana

figure 49b

Xanthoparmelia luderitziana Hale, 1989a:551. [Type collection: On pebbles in loose granite-schist desert pavement, 9 km S of Luderitz, ele. 20 m, SWA/Namibia, Grid 2615 CA, Hale 80123, 28 Apr 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus loosely adnate on pebbles, rather brittle, 1–3 cm broad, dull yellowish green; lobes sublinear, 1–2 mm wide, separate to subimbricate with ascending tips; upper surface white-maculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, smooth to rugulose, black, shiny, in part yellow rimmed, very sparsely rhizinate, the rhizines black, coarse, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Diffractaic (major), barbatic (trace), squamatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 18.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This species is very close to the Namibian *X. walteri* (salazinic acid present) but the lobes are quite short and brittle. It occurs on desert pavement in the fog zone south of Luderitz.

Xanthoparmelia luminosa

figure 49c

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, 6–10 cm broad, bright yellowish green or darkening; lobes subirregular to broadly sublinear, 2–5 mm wide, contiguous to imbricate, brown rimmed at the tips; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla ochre in part; lower surface plane, black, with orange coloration where lower medulla is partially exposed, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subcorticate, 3–15 mm in diameter; spores 5 × 7–10 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, skyrin.

ILLUSTRATION.—Elix, 1981, fig. 7.

DISTRIBUTION.—Australia (NSW, ACT, SA), South Africa (Cape Province).

COMMENTS.—In the field the thallus color is an intense yellow green. It resembles *X. tasmanica*, which is more loosely adnate and lacks any pigments. It is fairly rare in southeastern Australia and known from two collections near Cape Town in South Africa. Also in South Africa, *X. surrogata* is a rare, apparently closely related species with the same chemistry but with adnate, uniformly narrow lobes 1–2 mm wide.

Xanthoparmelia lynii

figure 49d

Xanthoparmelia lynii Elix and Johnston, 1988b:358. [Type collection: Bret Creek, Harts Range, Northern Territory, Australia, Craven s.n., v.1985 (CBG, holotype; MEL, isotype).]

DESCRIPTION.—Thallus adnate on rock, 5–10 cm broad, yellow green; lobes subirregular to sublinear, 0.8–1.5 mm wide, irregularly branched, congested and imbricate, short laciniate, the laciniae revolute, more or less canaliculate below, 0.2–0.3 mm wide; upper surface continuous, emaculate, shiny to dull at the center, sparsely isidiate, the isidia globose at first, distorted cylindrical to irregularly inflated at maturity, clumped, the tips syncorticate to weakly epicotice, pale, unbranched, 0.15–0.2 mm in diameter, to 0.2 mm high; medulla white; lower surface plane, ivory to pale tan, the tips often darkening, sparsely to moderately rhizinate, the rhizines brown, simple, slender, 0.3–0.5 mm long. Pycnidia and apothecia not seen.

CHEMISTRY.—Norlubardione (major), lodoxin, usrolitic (trace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1988a, fig. 6.

DISTRIBUTION.—Australia (NT).

COMMENTS.—This rare desert species is distantly related to the familiar *X. scabrosa*, which has erumpent isidia and a larger thallus. Then globose isidia are sparsely developed and aggregated in small clumps, unlike any other species in the genus.

Xanthoparmelia mannumensis

DESCRIPTION.—Thallus loosely adnate on rock, forming thick mats at maturity, 7–10 cm broad; lobes sublinear to linear, 0.5–1.5 mm wide, dichotomously to irregularly branched, separate to imbricate; upper surface efigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, coarse, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subcorticate, 2–5 mm in diameter; spores 4–5 × 8–9 μm.

CHEMISTRY.—Diffractaic (major), barbatic (trace), 4-O-demethylbarbatic, obtusatic, norobtusatic, and usnic acid.

ILLUSTRATION.—Elix, 1981, fig. 8.

DISTRIBUTION.—Australia (NSW, Tas, SA).
COMMENTS.—This rare chemotype in the _X. hypoleia_ group is confined to southeastern Australia.

Xanthoparmelia mapholanengensis

Figure 49e

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely on soil, rather firm, often forming a centrifugate pattern, 8–15 cm broad, light yellowish green; lobes sublinear, 0.8–2 mm wide, convex and in part appearing inflated, subclaminate, the tips blunt, suberete, darkening, separate to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, shiny, brown at the tips but blackening at the center, sparsely rhizinate, the rhizines brown to black, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Salazinic (major), protocetraric (major), norstictic, consalazinic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 19.

DISTRIBUTION.—Lesotho.

COMMENTS.—This common high elevation species has a unique combination of acids with salazinic, protocetraric, and sometimes norstictic acids both forming strong spots on TLC plates. The lobes are inflated and suberete and are often arranged in a centrifugate growth pattern.

Xanthoparmelia maricopensis

Xanthoparmelia maricopensis Nash and Elix, 1986:453. [Type collection: Crater Mountains along route 85, elev. 425 m, Maricopa County, Arizona, USA, Nash 6059 (ASU, holotype; ANUC, BM, COLO, DUKE, F, LSU, M, MN, NY, O, US, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 2–5 cm broad, yellowish green; lobes subirregular to sublinear, 1–2 mm wide, short, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, isidia initially globose, then cylindrical to irregularly inflated (Figure 16A), 0.1–0.2 mm in diameter, 0.1–0.8 mm high, the tips epicordicate, dull brownish, occasionally erumpent, simple or sparingly branched; medulla white; lower surface plane, pale brown, moderately rhizinate, rhizines pale brown, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic (major), hyposalazinic (minor), connorstictic, pertusaric (±), constipatic (±), protoconstipatic (±), and usnic acids.

DISTRIBUTION.—Western USA, Mexico.

COMMENTS.—This species had previously been identified as _X. dierythra_, which is less tightly adnate, lacks both fatty acids and hyposalazinic acid and occurs mainly in north-central USA.

Xanthoparmelia marroninipuncta

X. marroninipuncta Brusse, 1984:315. [Type collection: On a low mudstone kranz, Uitspannings River Pass, 40 km NW of Mereweaver, Cape Province, South Africa, Grid 3221 CA, *Brusse* 3417 (PRE, holotype; COLO, LD, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 3–8 cm broad, dull yellowish green; lobes sublinear, 1.2–3 mm wide, subimbricate; upper surface continuous, emaculate, quite rugose with age, with numerous small dark spots visible with the naked eye, isidia and soredia lacking; medulla white with scattered deep purple patches; lower surface plane, pale brown, moderately rhizinate, rhizines pale brown, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–6 μm. Apothecia adnate, 5–10 mm in diameter, the rim breaking open to reveal a purple medulla; spores 4–6 × 8–10 μm.

CHEMISTRY.—Protocetraric and usnic acids, one unidentified anthraquinone in the “endomiltoïdes” series.

ILLUSTRATION.—Brusse, 1984, fig. 3.

DISTRIBUTION.—South Africa (Transvaal, OFS, Cape Province).

COMMENTS.—The black spots on the surface, below which the purple pigment is clearly visible, are unique in the genus and simplify identification of the species in the field. _Xanthoparmelia dichromatica_ has the same chemistry but without black spotting (the pigment is scattered in the medulla below the cortex) and with a more easterly range in eastern Cape Province, Lesotho and Orange Free State. It has a remarkably broad ecological range from fairly moist sheltered sandstone canyons in southern Cape Province to barren dolerite outcrops in the arid Great Karoo.

Xanthoparmelia maxima

Figure 49f

Xanthoparmelia maxima Hale, 1989a:552. [Type collection: Mudstone outcrops along hwy R388, 32 km N of junction with R63 (S of Richmond), elev. 1400 m, Cape Province, South Africa, Grid 3124 CA, *Hale* 80651, 4 Apr 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, leathery but breaking apart when collected, 6–9 cm broad, light yellowish green; lobes subirregular and broadly rotund, 3–9 mm wide, subimbricate; upper surface continuous, emaculate, dull and in part white pruinose, rugose and transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, light brown, moderately to densely rhizinate, the rhizines pale brown, robust, simple to splayed or furcate, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 μm. Apothecia well developed, stipitate, 2–5 mm in diameter,
the disc becoming white pruinose, rarely perforate, the rim usually inrolled.

CHEMISTRY.—Norstictic (major), salazinic (minor), con-salazinic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 20.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The unusually broad lobes resemble those of South African *X. colorata*, which is black below. It is also near *X. crassioloata*, which grows on soil and is more convoluted. The species is common at the type locality but not known elsewhere.

Xanthoparmelia mbabanensis

Figure 50a

Xanthoparmelia mbabanensis Hale, 1987b:322. [Type collection: Mbabane Nature Reserve, 10 km N of Mbabane, elev. 1000 m, Swaziland, Grid 2631 AA, Hale 79071 (US, holotype; LD, PRE, isotypes)].

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather brittle and falling apart when collected, 5–8 cm broad, darkish yellow green; lobes subirregular to sublinear, 2–3 mm wide, imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical (Figure 16), 0.08–0.1 mm in diameter, to 0.3 mm high, the tips syncorticate, darkening, simple to sparingly branched; medulla white; lower surface plane, dark brown toward the tips but blackening at the center, sparsely rhizinate, the rhizines brown to black, stout, simple, 0.3–0.5 mm long. Pycnidia not common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–4 mm in diameter; spores 5–6 × 8–9 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, physodic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 5.

DISTRIBUTION.—South Africa (Natal), Swaziland.

COMMENTS.—Closely related to *X. subramigera*, which occurs commonly with it, *X. mbabanensis* has a distinctly lower surface. The typical habitat is large granitic or sandstone boulders in the Drakensberg foothills.

Xanthoparmelia meruensis

Xanthoparmelia meruensis Krog and Swinscow, 1987:426. [Type collection: Mt. Meru Crater, Arusha Dist., Northern Province, Tanzania, elev. 2600 m, Krog and Swinscow T5/172 (O, holotype; BM, isotype)].

DESCRIPTION.—Thallus adnate to loosely adnate, rather brittle and somewhat pulvinate, 4–6 cm broad, darkish yellow green; lobes sublineal, 0.7–1.5 mm wide, irregularly branched, short, black rimmed and turning brown at the tips, sparsely laciniate, the laciniae about 0.3 mm wide; upper surface continuous, emaculate, dull, rugulose with age, densely isidiate, the isidia cylindrical (Figure 17a), coarse, 0.1–0.2 mm in diameter, to 2 mm high, the tips syncorticate, darkening, simple to coralloid branched; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, stout, simple, 0.2–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Unidentified fatty acids in the “subdecipiens” series and usnic acid.

ILLUSTRATION.—Krog and Swinscow, 1987, fig. 5.

DISTRIBUTION.—Tanzania, Ethiopia, Kenya.

COMMENTS.—This East African species may be related to *X. atroventralis*, which occurs in southern Africa. The fatty acids in these two high elevation species seem to be different, however.

Xanthoparmelia metaclystoides

Figure 50b

Xanthoparmelia metaclystoides (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:284.

Parmelia metaclystoides Kurokawa and Filson, 1975:40. [Type collection: Kimba to Cowell Road, 18 km NW of Cowell, S.A., Australia, Filson 11783 (MEL, holotype)].

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 7–10 cm broad, dark yellowish green; lobes subirregular, 1–2 mm wide, imbricate and becoming crowded at the center; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6 μm. Apothecia common, substipitate, 2–7 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Norstictic (major), connorstictic, salazinic (‡), constipatic (±), protoconstipatic (‡), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 2: fig. 3.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This is a fairly common lichen in drier areas throughout South Australia. The recently described *X. wisangerensis* has equal concentrations of norstictic and salazinic acids and subterete secondary lobes. The American *X. Californica* lacks any fatty acids.

Xanthoparmelia metamorphosa

Figure 50c

Xanthoparmelia metamorphosa (Gyelnik) Hale, 1974b:488.

Parmelia metamorphosa Gyelnik, 1938a:284. [Type collection: Eden, NSW, Australia, Cheel s.n. (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed)].

DESCRIPTION.—Thallus loosely adnate on rock, often pulvinate, 2–6 cm broad, dark yellowish green; lobes sublinear to linear, 0.2–0.5 mm wide, somewhat irregularly constricted,
divaricate and separate, black rimmed; upper surface continuous to faintly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, rugulose with age, sparsely rhizinate, the rhizines brown, coarse, simple, to 0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subhispid to hispid, 3–8 mm in diameter; spores 4–6 × 8–10 μm.

CHEMISTRY.—Norlobaridone, loxodin, and usnic acid.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 28.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, SA), New Zealand.

COMMENTS.—The most important features of this Australian endemic are the very narrow stringy lobes and the rugose lower surface. Though chemically identical, *X. furcata* has much broader, sublinear, emaculate lobes. The South African *X. tenuiloba*, a smaller pulvinate plant, lacks maculae and loxodin.

Xanthoparmelia metastrigosa

Xanthoparmelia metastrigosa (Elix) Hale, 1984:79.

Parmelia metastrigosa Elix, 1981:360. [Type collection: NE slopes of Mt. Canobolas, near Orange, NSW, Australia, Elix 4627 (MEL, holotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rocks or rocky soil, 7–12 cm broad, dark yellowish green; lobes sublinear, 1.5–4 mm wide, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown or darkening at the tips, moderately to densely rhizinate, the rhizines long and often dichotomously furcate, pale brown, 0.2–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subhispid, 3–12 mm in diameter; spores 4–6 × 9–11 μm.

CHEMISTRY.—Hypostictic, hypocystinetic, hyposalazinic, and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 9.

DISTRIBUTION.—Australia (NSW).

COMMENTS.—Known only from Mt. Canobolas, this lichen has a unique combination of morphology and chemistry. On a superficial examination it could be mistaken for *X. subtrigosa*, which contains norstictic acid.

Xanthoparmelia mexicana

FIGURE 50d

Xanthoparmelia mexicana (Gyelnik) Hale, 1974b:488.

Parmelia mexicana Gyelnik, 1931b:281. [Type collection: San Jeronimo, Mexico, Anable 676 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Xanthoparmelia ramigera f. *mexicana* Gyelnik, 1938a:287. [Type collection: San Angel Pedregal, Mexico, Anable 216 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 4–10 cm broad, yellowish green; lobes subirregular, 1.5–4 mm wide, apically round, rarely marginally laciniate, contiguous to imbricate; upper surface continuous to rarely in part white-maculate, shiny, densely isidiate, the isidia subglobose to cylindrical or irregularly inflated (Figure 17b), 0.1–0.2 mm in diameter, 0.1–0.5 mm high, the tips syncaricate, brownish to blackening, becoming coraloid branched with age; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale, simple, 0.2–0.5 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 × 6–7 μm. Apothecia rare, subhispid, 3–10 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids.

DISTRIBUTION.—Western USA, Mexico, Dominican Republic, Argentina, Kenya, Australia (Qld, NSW, ACT, Vic, Tas, SA, NT, WA), New Zealand, Japan, Korea, China, Nepal.

COMMENTS.—Remarkably, this common, widely distributed lichen has only one synonym. It forms the nucleus of a large group of 10 morphologically similar species with cylindrical isidia, adnate thallus, and a pale lower surface. This group is discussed in more detail in the introduction. There is great variation in isidial morphology, and some populations with nearly globose, in part erumpent isidia may well represent a distinct species.

Xanthoparmelia microlobulata

FIGURE 50e

Xanthoparmelia microlobulata Hale, 1987b:322. [Type collection: On basaltic outcrops at the escarpment, Naudesnek, elev. 2180 m, Cape Province, S. Africa, Grid 3028 CB, Hale 76859, 9 Oct 1986 (US, holotype; ANUC, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather fragile, 5–8 cm broad, dull yellowish green; lobes subirregular, 1.2–2.5 mm wide, contiguous to imbricate, becoming densely short-lobulate in the center and periphery, the lobules 0.1–0.5 mm wide, to 0.5 mm long, appressed and imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.3 mm long but barely papillate at the lobe tips. Pycnidia well developed; conidia weakly bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Norlobaridone, isonorlobariol, unknown substance (fatty acid?), and usnic acid (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987b, fig. 6.

DISTRIBUTION.—South Africa (Cape Province), Lesotho.

COMMENTS.—This high-elevation species, which occurs on sheltered dolerite ledges, is distinguished by its chemistry (norlobaridone being extremely rare in South African *Xantho-**
Xanthoparmelia microspora

Xanthoparmelia microspora (Müller Argoviensis) Hale, 1974b:488. Parmelia microspora Müller Argoviensis, 1879b:170. [Type collection: Gauduas, near Bogotá, Colombia, André 576 (G, lectotype; BM, isolecotypy).]

Parmelia conspersa f. polia polyphylla Meyen and Flotow, 1843:220. [Type collection: Tacora, Peru, Meyen (G, lectotype).]

Description.—Thallus adnate on rock, firm, 3–10 cm broad, yellowish green; lobes subirregular, 2–4 mm wide, contiguous to imbricate; upper surface continuous to faintly white-maculate, moderately to densely sorediate, the soralia orbicular, becoming diffuse with age; medulla white; lower surface plane, black with a brown zone around the tips, moderately to densely rhzinate, the rhizines black, fine, unbranched, 0.2–0.8 mm long. Pycnidia rare; conidia bifuso-siform, 0.5 × 5–6 μm. Apothecia rare, substipitate, 2–8 mm in diameter; spores 5 × 9–10 μm.

Chemistry.—Salazinic, gyrophoric (±), and usnic acids.

Distribution.—Venezuela, Colombia, Ecuador, Peru, Bolivia, Argentina, Chile, Gough Island.

Comments.—South America is the center of speciation for sorediate species of *Xanthoparmelia*, and *X. microspora* is both the oldest name and the most common species in the group, especially in the Andean chain at mid or higher elevations. *Xanthoparmelia ulcrosora* is morphologically similar except for the pale brown lower surface.

Xanthoparmelia minuta

Xanthoparmelia minuta Knox and Hale in Hale, 1986b:585. [Type collection: Mt. Sheba Nature Reserve, Pilgrims Rest, elev. 1965 m, Transvaal, South Africa, Grid 2430 DC, Hale 72108, 15 Jan 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus very tightly adnate on rocks, 1–2 cm broad, yellowish green; lobes subirregular, dichotomously branched, 0.4–0.8 mm wide, short, black rimmed, contiguous; upper surface continuous, emaculate, shiny, sparsely to moderately isidiate, the isidia cylindrical (Figure 17d), 0.05–0.07 mm in diameter, 0.09–0.1 mm high, the tips syncaricate, black, unbranched; medulla white; lower surface plane, black, moderately rhzinate, the rhizines black, 0.3–0.5 mm long, simple. Pycnidia and apothecia lacking.

Chemistry.—Norstictic (major), salazinic (major), con-salazinic, gyrophoric (trace), protoconspatic (trace), and usnic acids.

Illustration.—Hale, 1986b, fig. 29.

Distribution.—South Africa (Transvaal, Natal).

Comments.—This inconspicuous species, highly localized on sandstone at higher elevations in the Transvaal Drakensberg escarpment, is reminiscent of *X. mougeotina*, but the lobes are consistently narrower and the chemistry is quite different (*X. mougeotina* has stictic acid). *Xanthoparmelia pseudocongenis* has similar morphology but contains stictic acid. The Australian *X. filsonii* is also very similar but contains only norstictic acid as the major metabolite.

Xanthoparmelia moctezumensis

Xanthoparmelia moctezumensis Nash in C. Culberson, Nash, and Johnson, 1979:155. [Type collection: 28 km E of Moctezuma, Sonora, Mexico, Nash 12548 (ASU, holotype; DUKE, US, isotypes).]

Description.—Thallus adnate on rock, 3–6 cm broad, yellowish green; lobes subirregular, 0.5–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, densely isidiate, the isidia cylindrical (Figure 17d), 0.10–0.18 mm in diameter, 0.1–0.3 mm high, the tips weakly epicorticate, mostly unbranched; medulla white; lower surface plane, pale brown, sparsely to moderately rhzinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

Chemistry.—3-α-Hydroxybarbatic (major), barbatic (minor), baeomycesic (trace), squamatic (trace), 4-O-demethylbarbatic (trace), and usnic acids.

Illustration.—Culberson, Nash, and Johnson, 1979, fig. 2.

Distribution.—Southwestern USA, Mexico.

Comments.—This is a rare species in the *X. mexicana* group, chemosyndromic with *X. ajoensis* and *X. tucsonensis* (C. Culberson, Nash, and Johnson, 1979). It is the only one in *Xanthoparmelia* to contain 3-α-hydroxybarbatic acid as the major metabolite.

Xanthoparmelia mollis

Xanthoparmelia mollis Hale, 1986b:585. [Type collection: Orihi Gorge Nature Reserve, elev. 300 m, Natal, South Africa, Grid 3030 CB, Hale 74043, 3 Feb 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus loosely adnate on flat rocks, soft, forming extensive centrifugate colonies 10–20 cm broad, yellowish green; lobes linear-longate, dichotomously branched, 0.5–0.7 mm wide, the ultimate lobes nearly terete; upper surface white-maculate to effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, rugose, rhizines almost completely lacking except for a few at lobe tips, black, simple, stout, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

Chemistry.—Protocyctaric and usnic acids.

Illustration.—Hale, 1986b, fig. 30.

Distribution.—South Africa (Natal).

Comments.—This species falls in the *X. hypolea* group but the thallus forms soft centrifugate colonies, the lobes are...
uniformly narrow, and the surface is at most weakly effigurate-maculate. It is known only from collections at Oribi Gorge, a moist subtropical locality well east of the semi-arid range of *X. hypoleia*.

Xanthoparmelia molliuscula

Figure 51b

Parmelia molliuscula Acharius, 1810:492. [Type collection: Cape of Good Hope, South Africa, Thunberg s.n. (H-Ach, lectotype; UPS, H-Nyl. herb. no. 34791, isotype).]

Parmelia thamnidiella Stirton, 1877:213. [Type collection: South Africa, MacOwan s.n. (BM, lectotype; PRE, isotype).]

Parmelia conspersa var. thamnidiella (Stirton) Stizenberger 1890:153.

Parmelia conspersa f. molliuscula (Acharius) Vainio, 1899a:280.

Parmelia conspersa ssp. molliuscula (Acharius) Elenkin, 1901b:20.

Parmelia pseudoconspersa Gyelnik, 1934c:162. [Type collection: Montague Pass, South Africa, Breutel s.n. (BP, lectotype).]

Parmelia steineri Gyelnik, 1938a:289. [Type collection: Wolseley, South Africa, A.E. v.d. Byl 1141 (W, lectotype; BP, isotype).]

Pseudevernia molliuscula (Acharius) Dodge, 1959:183.

Pseudevernia thamnidiella (Stirton) Dodge, 1959:182.

Parmelia subhymenial Elix, 1981:372. [Type collection: 20 km W of Swan Reach along Sedan Road, S.A., Australia, Elix 2765 (MEL, holotype; CBG, isotype).]

Description.—Thallus loosely adnate to free growing on soil, very brittle, 4–6 cm broad, yellowish green; main lobes sublinear, 1–2 mm wide, becoming densely laciniate at the center, the laciniae subsucceeding with ultimate tips terete, 0.2–0.6 mm wide; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, dense and becoming short laciniate at the center with age; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale, moderately rhizinate, the rhizines pale, simple, 0.2–0.5 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–7 μm. Apothecia numerous, subcircinate, 1–3 mm in diameter; spores 5–6 × 9–11 μm.

Chemistry.—Lichesterinic (?) and usnic acids (det. A. Johnson).

Illustration.—Hale, 1984, fig. 5.

Distribution.—Western North America.

Comments.—This species occurs widely in the Rocky Mountains. It is the only *Xanthoparmelia* with a fatty acid that forms a strong visible spot under shortwave UV and reacts faint gray after spraying with sulfuric acid and heating.

Xanthoparmelia monticola

Figure 51d

Xanthoparmelia monticola (Dey) Hale, 1988b:404.

Parmelia monticola Dey, 1974:361. [Type collection: Craggy Dome, Buncombe Co., North Carolina, USA, Dey 1509 (DUKE, holotype).]

Parmelia constictans f. inactiva Boulé de Lesdain ex Gyelnik, 1935:31. [Type collection: Salazar, Mexico, Amable 251, 13 Apr 1925 (BP, lectotype; designated type in Boulé de Lesdain herbarium destroyed).]

Xanthoparmelia monticola (Dey) Hale in Egan, 1987:162. [Invalid combination with no basionym cited.]

Description.—Thallus adnate to loosely adnate on rock, firm, 5–8 cm broad, light yellowish green; lobes sublinear, 1–2.5 mm wide, elongate, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale or darker brown, moderately rhizinate, the rhizines pale or darker brown, robust, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia common, subcircinate, 1–3 mm in diameter; spores absent.

Chemistry.—Fumarprotocetraric (major), phylodical, constictan, protocetraric (trace), protorobustin (±), and usnic acids (the type description included stictic acid, representing a mixture in the collection, but did not mention constictic or protocetraric acids) (det. J. Johnston).

Distribution.—Eastern USA, Mexico.

Comments.—This species has only been collected at higher elevations in the southern Appalachian Mountains. A specimen from Mexico (the type of *P. constictans* f. *inactiva*) is more
narrow lobed than the average but falls within the range of *X. monticola*.

Xanthoparmelia mougeotii

Figure 51e

Xanthoparmelia mougeotii (Schaerer) Hale, 1974b:488.

Parmelia mougeotii Schaerer 1850-46. [Type collection: Mt. Heledre, near Brujerium, Mougeot s.n., Schaerer, Lichenes Helvetica Exsiccati 548 (UPS, neotype; BM, FH-Tuck, WU, isoneotypes).]

Parmelia conspersa var. *quartica* Mougeot, 1845:262. [Type collection: Brujerium, Voges, France, Mougeot 1234 (FH-Tuck, lectotype).]

Parmelia mougeotii f. *discreta* Nylander, 1860:392. [Type collection: Helsinki, Finland, Nylander s.n. (H, Nyl. herb. no. 34810, lectotype).]

Inbricaria mougeotii (Schaerer) Koerber, 1865:32.

Parmelia discreta (Nylander) Nylander, 1869b:298.

Parmelia mougeotii var. *spumata* Hulting, 1872:11. [Type collection: Morrum, Vestra Bleking, Sweden, Hulting s.n. (GB, lectotype).]

Parmelia sorediandia Müller Argoviensis, 1889b:509. [Type collection: Near Concepción, Argentina, Lorentis s.n. (G, lectotype; H, M, W isoneotypes).]

Parmelia mougeotii f. *microphylla* Anders, 1928:146. [Type collection: Aschendorf near B-Leipa, Czechoslovakia, Anders s.n. [not seen]. A possible topotype dated 11 Aug 1933 in Anders, Lichenes exsiccati 333 was found in PRM.]

Parmelia mougeotii f. *dominata* Servit, 1937:9. [Type collection: Vsenory near Prague, Servit s.n. (PRM and herb. Nadvorník [not seen]).]

Parmelia mougeotii f. *incurvatae* Servit, 1937:9. [Type collection: Mrakotín kopec at Mrakotín near Hlinsko, Bohemia, Nadvorník s.n. (PRM and herb. Nadvorník [not seen]).]

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, rarely on bark, usually appearing areolate at the center, 2-4 cm broad, dark yellowish green, sometimes turning a distinct brown; lobes sublinear, 0.2-0.5 mm wide, contiguous to subimbriicate and crowded, brown rimmed at the tips; upper surface continuous, emaculate, shiny, rugulose, transversely cracked with age, moderately sorediate, the soralia orbicular, capitate, 0.5-1 mm in diameter; medulla white; lower surface plane, black, shiny, sparingly to moderately rhizinate, the rhizines dark brown to black, simple, 0.1-0.2 mm long. Pycnidia rare; conidia bifusiform, 0.5 x 7-9 μm. Apothecia rare, adnate, ±1 mm in diameter; spores 5-6 x 10-12 μm.

CHEMISTRY.—Stictic (major), constictic, cryptostictic, norstictic, menegazziaic, and usnic acids.

ILLUSTRATION.—Jahns, 1980, fig. 413; Krog, Osthagen, and Tonsberg, 1980, p. 208; Ozenda and Clauzade, 1970, fig. 511.

DISTRIBUTION.—Finland, Sweden, Norway, England, Belgium, Germany, Switzerland, France, Czechoslovakia, Poland, USSR, western USA, Hawaii, Dominican Republic, Ecuador, Peru, Brazil, Argentina, South Africa (Cape Province).

COMMENTS.—This well-known European species has a pantemperate distribution in cool, humid localities. Dark brown pigmentation is caused by "Parmelia brown" pigments similar to those in *Neofuscia* (H. Imshaug, personal communication).

Xanthoparmelia mougeotii

Figure 51f

Parmelia mougeotii Nylander, 1888:27. [Type collection: [Knight], New Zealand, (H, Nyl. herb. no. 34661, lectotype).]

Parmelia mougeotii var. *obscurata* Müller Argoviensis, 1892b:30. [Type collection: Based on *P. mougeotii* Nylander.]

Parmelia mougeotii f. *mougeotina* (Nylander) Zahlbruckner, 1941:105. [Superficial combination.]

DESCRIPTION.—Thallus very tightly adnate on rock, 2-6 cm broad, dark yellowish green, darkening to brown with age; lobes sublinear, 0.3-0.6 mm wide, rather short, dichotomously branched, separate to contiguous, black rimmed; upper surface continuous to faintly white reticulate, moderately to densely isidiate, the isidia subglobose to cylindrical (Figure 17e), 0.04-0.08 mm in diameter, 0.1-0.2 mm high, the tips syncrurate, darkening, mostly unbranched; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.1-0.3 mm long. Pycnidia very rare; conidia bifusiform, 0.5 x 7-9 μm. Apothecia rare, adnate, ±1 mm in diameter; spores 5-6 x 10-12 μm.

CHEMISTRY.—Stictic (major), constictic, cryptostictic, norstictic, menegazziaic, and usnic acids.

ILLUSTRATION.—Galloway, 1980, fig. 8.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—Gyelnik (1938b:32) guessed that the type in H was sorediate but was unable to recognize either soredia or isidia. The type is indeed a mixture of isidiate and nonisidiate species, and Nylander's brief description gives little help in deciding on a lectotype. The species as delimited here seems to be confined to Australasia. *Xanthoparmelia congensis*, previously synonymized with it, is separated by the globose, erumpent isidia.

Xanthoparmelia multipartita

Figure 52a

Parmelia conspersa var. *multipartita* R. Brown ex Cronbie, 1879:394. [Type collection: Port Jackson, NSW, Australia, Brown 542 (BM, lectotype).]

DESCRIPTION.—Thallus loosely adnate on rock, pulvinate, 6-9 cm broad, dark yellowish green; lobes sublinear-elongate, 0.5-1 mm wide, subdichotomously branched, imbricate with age, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, rugulose, black, very sparsely rhizinate, the rhizines black, coarse, simple, 0.3-0.8 mm long. Pycnidia common; conidia
bifusiform, 0.5 × 6 μm. Apothecia common, substipitate, 4–10 mm in diameter; spores 5–6 × 6–10 μm.

CHEMISTRY.—Hypostigetic, hyposalizinic, hypoconistic (±), and usnic acids.

ILLUSTRATION.—Elis, 1981, fig. 10.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas), New Zealand.

COMMENTS.—These is no other loosely adnate species with this unusual chemistry. It is confined to Australasia.

Xanthoparmelia mutabilis, new combination

Omphalodium mutabile (Taylor) Minks, 1900:86.

Parmelia taylori Dodge, 1959:60. [Superfluous name based on _Parmelia mutabilis_ Taylor.]

DESCRIPTION.—Thallus adnate to barely loosely adnate on rock, rather fragile, 3–5 cm broad, dark yellowish green; lobes sublinear, 1.5–2.5 mm wide, rather short and irregularly branched, imbricate; upper surface continuous to faintly white-maculate, isidia and soredia lacking; medulla white to uniformly pale orange (type specimen); lower surface plane, shiny, pale or darker brown, moderately rhizinate, the rhizines brown, simple, robust, 0.4–0.8 mm long. Pycnidia numerous; conidia not found. Apothecia substipitate, 2–3 mm in diameter; spores 5–6 × 8–9 μm.

CHEMISTRY.—Fumarprotocetraric (major), succinprotocetraric, physodicolic (±), caperatic, and usnic acids, secalonic acid pigments.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The identity of this rare South African lichen has long been in question. Nylander (1860:387) thought it was close to _Parmelia conspersa_ except for the whitish color, but I doubt very much that he examined the type specimen. Müller Argoviensis (1888c:200), who did look at the type, based his description on a mixed specimen identifiable as _X. hypoleia_. The type sheet is a mixture of _X. mutabilis_ (from Uitenhage), _X. hypoleia_, and _X. phaeophana_. Clearly the Uitenhage specimen is the type and is used as the basis of the description here.

Zahlbruckner (1929:138) did little to clarify the situation when he listed “_Parmelia mutabilis_ Tayl. (non Fries)” as a synonym of _X. hypoleia_. This citation encouraged Dodge (1959:60) to propose a new name, _P. taylori_, for the presumed homonym. However, Fries (1831:186) merely cites “_Parmelia verrucosa_ a. Urceolaria. Normalis: Urceolaria mutabilis Ach,” with no reference to a “Parmelia mutabilis.” A second “Parmelia mutabilis,” ascribed by Zahlbruckner (1934:404) to Trevisan, is apparently based on an earlier reference (1928:334) to “_Patellaria mutabilis_ Trev.,” with no mention of _Parmelia_. As far as I can determine, Taylor was the first one to use the name _Parmelia mutabilis_.

As so delimited, _X. mutabilis_ is characterized by the medullary chemistry, which, except for the of presence pigments, indicates that it is closely related to _X. cerasina_. The pale orange medullary pigments are identical with those in _X. krogiae_: that is, undetermined secalonic acid derivatives.

Xanthoparmelia namakwa

FIGURE 52b

Xanthoparmelia namakwa Hale, 1986b:586. [Type collection: 19.5 km NNW of Vanrhynsdorp on east side of Hwy N7, elev. 200 m, Cape Province, South Africa, Grid 3118 BC, _Hale_ 73072, 26 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, rather firm and leathery, 4–8 cm broad, darkish yellow-green; lobes sublinear, 1–2 mm wide, plane to weakly convex, contiguous, black rimmed; upper surface strongly effigurate-maculate over the whole surface or rarely only in patches, the maculae elongate, sometimes coalescing, shiny, becoming rugose with age toward the center, isidia and soredia lacking; medulla white; lower surface plane to slightly concave, uniformly pale brown or turning nearly black only at the tips, sparsely to moderately rhizinate, the rhizines coarse, 0.5–1 mm long. Pycnidia abundant; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 1–5 mm in diameter; spores 5–6 × 9–11 μm.

CHEMISTRY.—Salazinic (major), consalazinic (±), norstictic (+major), usnic acids, chalybeizans unknown (±).

ILLUSTRATION.—Hale, 1986b, fig. 31.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This Namaqualand karoo lichen is close to _X. effigurata_, which has a uniformly black lower surface and salazinic acid (as the major metabolite) and the chalybeizans unknown. The two species have been collected together only at Anenouspas. Another superficially similar species, _Namakwa exornata_ (Steiner and Zahlbruckner) Hale (Hale, 1988a), has strongly convex lobes, coarse rhizines and recessed, pseudo-cyphella-like maculae.

Xanthoparmelia namaquensis

FIGURE 52c

Xanthoparmelia namaquensis Hale, 1986b:586. [Type collection: 41 km NE of Vanrhynsdorp at Vanrhyns Pass along Hwy R27, elev. 800 m, Cape Province, South Africa, Grid 3119 AC, _Hale_ 73018, 28 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on rock, firm but easily breaking apart, 6–12 cm broad, yellowish green but darkening at the center; lobes sublinear, rather short and crowded, 2–5 mm wide, contiguous to imbricate; upper surface

FIGURE 52.—Species of Xanthoparmelia: a. _X. multipartita_ (Elis 1654); b. _namakwa_ (Hale 73072, holotype in US); c. _X. namaquensis_ (Hale 73018, holotype in US); d. _X. namaquensis_ (Nakanishi 1, holotype in TNS); e. _X. nashii_ (Nash 20392, holotype in ASU); f. _X. natalensis_ (Hale 76846, holotype in US). Scale in mm.
continuous to very weakly white-maculate, shiny, transversely cracked with age, isidia and soredia lacking; upper medulla white, lower medulla dark purple in decaying parts; lower surface plane, black, dull, sparsely rhizinate, the rhizines black, coarse, 0.5–1 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia not common, substipitate, 2–10 mm in diameter; spores 5 x 9 μm.

CHEMISTRY.—Lecanicor and usnic acids, a bright pinkish orange antraquinone pigment (±) on extraction with acetone (detected only in decomposing parts of the medulla).

ILLUSTRATION.—Hale, 1986b, fig. 32.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Of the eight species of *Xanthoparmelia* with lecanoric acid, this is the only one that is clearly loosely adnate. It sometimes produces a unique deep pinkish orange pigment (reacting K+ light purple), which is probably a decomposition product related (but not equal) to the antraquinone series in *X. endomiltoides*. It is apparently restricted to Namaqualand.

Xanthoparmelia nana

FIGURE 52a

Parmelia nana Kurokawa, 1985:86. [Type collection: 4 mi W of Midland Junction, Perth, W.A., Australia, *S. Nakashiki* 1 (TNS, holotype).]

DESCRIPTION.—Thallus adnate to adnate on rock, 1.5–2 cm broad, grayish green; lobes subirregular, 0.7–2 mm wide, short and irregularly branched, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked and darkening at the center, soredia and isidia lacking; medulla white; lower surface plane, pale brown to brown, sparsely rhizinate, the rhizines brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia cylindrical to subfusiform, 0.5 × 5–6 μm. Apothecia well developed, substipitate, 1–2 mm in diameter; spores immature.

CHEMISTRY.—Diffracta (major), salazinic, consalazinic (trace), protocetraric (trace), barbatic (trace), 4-O-demethylbarbatic (trace), 4-O-demethyldiffracta (trace), con stipatic (trace), protostipatic (trace), and usnic acids.

ILLUSTRATION.—Kurokawa, 1985, fig. 9.

DISTRIBUTION.—Australia (WA).

COMMENTS.—The only other species in the genus with diffracta and salazinic acids are *X. diffracta (trace)* and *X. lesothoensis*, both larger, leafy-lichened at high elevations in the Drakensberg escarpment in Lesotho. *Xanthoparmelia nana* is known only from the type collection near Perth.

Xanthoparmelia nashii

FIGURE 52e

Xanthoparmelia nashii Elix and Johnston in Elix, Johnston and Armstrong, 1986:293. [Type collection: King Rocks, 30 km NE of Hyden, W.A., Australia, Nash 20392 (ASU, holotype).]

DESCRIPTION.—Thallus adnate on rock, 4–7 cm broad, yellowish green, darkening somewhat with age; lobes sublinear, 1–2 mm wide, rather short, dichotomously branched, contiguous to subimbricate, 1–2 mm wide; upper surface continuous, emaculate, shiny, transversely cracked and rugulose with age, moderately to densely isidiate, the isidia cylindrical (Figure 17), 0.1–0.15 mm in diameter, 0.1–0.5 mm high, the tips syncorticate, black, simple to sparingly branched; medulla white; lower surface plane, black, sparingly to moderately rhizinate, the rhizines black, fine, 0.2–0.5 mm long, unbranched. Pycnidia and apothecia lacking.

CHEMISTRY.—Diffracta (major), barbatic (trace), 4-O-demethylbarbatic (trace), 3-α-hydroxybarbatic (trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 29.

DISTRIBUTION.—Australia (WA).

COMMENTS.—This rare species in subarid western Australia is close to *X. everardensis*, a nonisidiate species most common in central Australia.

Xanthoparmelia natalensis

FIGURE 52f

Xanthoparmelia natalensis Hale, 1987a:259. [Type collection: E of Oribi Gorge Hotel, elev. 300 m, Natal, South Africa, *Hale* 76846, 6 Oct 1986 (US, holotype; PRE, isotype).]

P. perfunctata Brusse, 1989a:402. [Nomen novum based on Xanthoparmelia natalensis Hale.]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 7–10 cm broad, dull yellowish green; lobes subregular, 2.5–6 mm wide, broad and apically rotund, separate to imbricate; upper surface continuous, emaculate, shiny, becoming densely isidiate, the isidia cylindrical, in part lobulate and dorsiventral, 0.07–0.15 mm in diameter, 0.2–0.3 mm high, the tips syncorticate, brownish, sparingly branched; medulla white; lower surface plane, pale brown to brown, sparsely rhizinate, the rhizines simple, brown, 0.5–1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Fumarprotocetraric, succinoprotocetraric, diffracta, physodalic (±), and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 12.

DISTRIBUTION.—South Africa (Natal).

COMMENTS.—Morphologically similar *X. subramigera*, a common lichen in the Drakensberg region with erect isidia that do not become dorsiventral, has a generally paler lower surface, and lacks diffracta acid. This species appears to be confined to southern Natal.

Xanthoparmelia naudesnekiia

FIGURE 53a

Xanthoparmelia naudesnekiia Hale, 1987b:324. [Type collection: On sheltered basaltic rocks in escarpment, Naudesnek, elev. 2180 m, Cape Province, S. Africa, Grid 3028 CB, *Hale* 76868, 9 Oct 1986 (US, holotype; PRE, isotype).]
DESCRIPTION.—Thallus tightly adnate to adnate on rock, firm, 5–7 cm broad, dull yellowish green; lobes subirregular, 0.8–1.5 mm wide, black rimmed, contiguous to imbricate but soon densely lobulate, the lobules subacinate and appressed, 0.5–1 mm wide and 1–2 mm long; upper surface continuous, emaculate, shiny, heavily pycnidiate, isidia and soredia lacking; upper medulla white, lower medulla ochre in part; lower surface plane, light brown to brown, moderately rhizinate, the rhizines simple, pale brown, 0.2–0.4 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 4–5 μm. Apothecia substipitate, 3–5 mm in diameter; spores not found.

CHEMISTRY.—Hyphotic (major), stenosporonic (major), colensoic (minor), hyposalazinic (minor), hyponastic (trace), and usnic acids, skyrin (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987b, fig. 7.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The complex combination of acids in this rare lichen is unusual. Closely related X. brevilobata in Lesotho differs in lacking stenosporonic acid and in having shorter, more congested lobes. Xanthoparmelia naudesnektia is still known only from exposed basaltic ledges at Naudesnek Pass in the Drakensberg escarpment.

Xanthoparmelia neochlorochroa

DESCRIPTION.—Thallus loosely adnate on rock, firm, becoming pulvinate, 5–10 cm broad, light yellowish green; lobes sublinear, 1–3 mm wide, dichotomously branched, imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown, sparsely rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–6 mm in diameter; spores 5–7 × 10–12 μm.

CHEMISTRY.—Unidentified fatty (major), constipatic (trace), dehydroconstipatic (trace), protoconstipatic (trace), per tusaric (trace), and usnic acids.

ILLUSTRATION.—Filson, 1982, fig. 12.

DISTRIBUTION.—Australia (NSW, ACT, Vic), New Zealand.

COMMENTS.—This rather rare but conspicuous lichen is distinguished by the fatty acid chemistry. The major component, an unidentified fatty acid, turns gray after development with sulfuric acid. This spot is close to lichestericin.

Xanthoparmelia neochlorochroa

DESCRIPTION.—Thallus vagrant, free growing on soil, firm, breaking up into discrete colonies 2–4 cm broad, light yellowish green; lobes sublinear, 1–2 mm wide, moderately to strongly convoluted, irregularly branched, separate to imbricate; upper surface continuous to very faintly white-maculate, shiny, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane or subcarnalicate with an inconspicuous rim near the tips, brown, shiny, moderately to densely rhizinate, the rhizines brown with whitish splayed tips, 0.3–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic, connorstictic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 8.

DISTRIBUTION.—Western USA.

COMMENTS.—This is essentially the norstictic acid-containing chemotype of X. chlorochroa, a widespread vagrant soil lichen in western North America. It is most common in Idaho. The chemical pattern resembles that in Australian X. convoluta-X. norconvoluta and X. cantschadalis-X. kaschistania in USSR.

Xanthoparmelia neochlorochroa

Xanthoparmelia neochlorochroa (Hale) Hale, 1974b:488.

PARALLELS—Xanthoparmelia neochlorochroa (Hale) Hale, 1974b:488.

DESCRIPTION.—Thallus very tightly on rock, 1–6 cm broad, dark yellowish green; lobes sublinear, 0.5–1 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked, densely isidiate, the isidia subglbose to cylindrical (Figure 17g), 0.08–0.13 mm in diameter, 0.1–0.5 mm high, the tips syncoritate, darkening, sparsely branched, breaking off easily; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, adnate, −1 mm in diameter; spores 4 × 7–8 μm.

CHEMISTRY.—Hydropontocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATIONS.—Brusse, 1984, fig. 6 (as P. patula); Hale, 1971a, fig. 2d.

DISTRIBUTION.—Zimbabwe, South Africa (Transvaal, Natal).

COMMENTS.—This tightly adnate lichen occurs in the semi-arid high veld bordering the eastern Drakensberg region. It is closely related to X. weberi, a larger, adnate lichen with a pale lower surface. Xanthoparmelia oribensis, which occurs at moister sites in Natal, is a much larger species with skyrin in the lower medulla.
Xanthoparmelia neocongruens

FIGURE 53c
Xanthoparmelia neocongruens Hale, 1984:76. [Type collection: Bowe's Dorp, near Kamieskroon, Namaqualand, Republic of South Africa, Stokoe 7719 BOL, holotype; US, isotype.]

DESCRIPTION.—Thallus loosely adnate on pebbles or less commonly free growing on soil, firm, 4–8 cm broad, light yellowish green; lobes sublinear, 2–5 mm wide, elongate, contiguous to imbricate; upper surface continuous, emaculate, shiny to dull, rugose with age, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane to weakly convoluted, pale brown, moderately rhizinate, the rhizines pale brown or darkening, simple or sparingly furcate, 0.5–1.3 mm long. Pycnidia common; conidia biserifiform, 0.5 x 4–5 μm. Apothecia rare, substipitate, 2–5 mm in diameter; spores 4 x 8–9 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids, and skyrin.

ILLUSTRATION.—Hale, 1984, fig. 6.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is commonly collected loosely attached on pebbles in open ridges of Bokkeveld shale in the Little Karoo. It is most closely related to X. subdomokosii, an adnate saxicolous lichen.

Xanthoparmelia neoconspersa

FIGURE 53d
Xanthoparmelia neoconspersa (Gyelnik) Hale, 1988b:404.
Parmelia neoconspersa Gyelnik, 1934c:161. [Type collection: Canon Sub, environs of Las Vegas, New Mexico, USA, Brouard 20681, 29 Apr 1929 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

DESCRIPTION.—Thallus tightly adnate on rock, 3–7 cm broad, dull yellowish green to brownish olive green; lobes sublinear, 0.6–1.2 mm wide, short and irregularly branched, contiguous to imbricate; upper surface continuous, emaculate, shiny to dull, becoming rugose-bullate with age, isidia and soredia lacking; medulla white; lower surface plane, black, sparingly rhizinate, the rhizines 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 x 4–5 μm. Apothecia well developed, substipitate, 1.5–2 mm in diameter; spores 5–6 x 9–11 μm.

CHEMISTRY.—Stictic (major), constictic, norstictic (trace), and usnic acids.

DISTRIBUTION.—Western USA.

COMMENTS.—This rare New Mexican lichen appears to be related to X. angustiphylla. The dark yellow-green thallus color and bullate-rugose center differentiate it from the South African-Australian X. bicontinens.

Xanthoparmelia neopropaguloides, new name

FIGURE 53f
Parmelia stenophylloides var. propaguloides Vainio, 1890b:62. [Type collection: Cara, Minas Gerais, Brazil, Vainio, Lich. Bras. Exc. 1241b (TUR, lectotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 4–6 cm broad, light yellowish green but darkening somewhat with age; lobes sublinear, 0.4–0.8 mm wide, elongate and dichotomously branched, separate to contiguous; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately to densely isidiate, the isidia cylindrical (Figure 17h), 0.05–0.07 mm in diameter, 0.1–0.4 mm high, the tips syncorticate, darkening, simple to sparsely branched; medulla white; lower surface plane, pale or darker brown, shiny, moderately rhizinate, the rhizines stout, unbranched, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic (major), constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 9.

DISTRIBUTION.—Cuba, Dominican Republic, Guatemala, Panama, Venezuela, Brazil, Ivory Coast, South Africa (Transvaal, Natal, Transkei, Venda), Swaziland, SWA/Namibia.

COMMENTS.—This widely distributed, previously unrecognized lichen is related to, but much smaller than the adnate to loosely adnate X. plitii, which also has a more consistently pale lower surface. It was previously identified as X. congensis, an erumpent-isidiate species with a black lower surface. I recently (Hale, 1987b) called this taxon Xanthoparmelia neopropaguloides (Gyelnik) Hale, but this is a synonym of Hypotrachyna microblasta (Vainio) Hale (Hale, 1975).

Xanthoparmelia neoreptans

FIGURE 53f
Xanthoparmelia neoreptans Hale, 1987a:259. [Type collection: 3.4 km S of Van Wyksdorp on E side of hwy R327, elev. 350 m, Cape Province, South Africa, Grid 3321 CD, Hale 77717, 19 Oct 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate to nearly free growing on soil, rather fragile but not fragmenting, 3–6 cm broad, dull yellowish green; lobes sublinear to linear, 0.6–1 mm wide, dichotomously branched and overlapping, some laciniae towards the center becoming terete, suberect; upper surface faintly to partly strongly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface canaliculate with a more or less conspicuous yellowish rim, pale brown to brown or (especially at the tips) blackening, moderately to densely rhizinate, the rhizines brown but blackening toward the tips.

simple or furcate, 0.5–1.2 mm long. Pycnidia lacking. Apothecia rarely developed, stipitate, 3–5 mm in diameter; spores not found.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 13.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—In morphology and size, X. neoreptans is close to X. molliuscula, which contains stictic acid and has numerous, well-developed terete secondary lobes. It occurs rather rarely in semi-arid karoo in southern Cape Province. The Australian X. reptans, containing fumarprotocetraric acid, is a larger lichen with broader, dichotomously branched, canaliculate lobes 0.8–1.5 mm wide that lack terete laciniae.

Xanthoparmelia neoreptana

Parmelia neoreptana Elix and Armstrong, 1983:475. [Type collection: Black Mountain Reserve, Canberra, A.C.T., Australia, Elix 6124 (MEL, holotype).]

Parmelia interposita Kurokawa, 1983:81. [Type collection: 18 mi E of Kondinin, W.A., Australia, S. Nakashiki 11-6 (TNS, holotype; not seen).]

DESCRIPTION.—Thallus very tightly adnate on rock, the center appearing areolate, 3–6 cm broad, dark yellowish green; lobes subirregular to sublinear, 0.5–1 mm wide, contiguous to crowded and subulate at the center, black rimmed; upper surface continuous, emaculate, shiny, transversely cracked, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.1–0.2 mm long. Pycnidia common; conidia bifu- siform, 0.5 × 5–6 µm. Apothecia common, adnate, −1 mm in diameter; spores 3.5–7×9–µm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATIONS.—Elix and Armstrong, 1983, fig. 7; Kurokawa (1985), fig. 5 (as *Parmelia interposita*).

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, SA, NT, WA), Mexico.

COMMENTS.—This widespread lichen belongs to the X. lineola series and is distinguished by the centrally areolate, very tightly adnate thallus. Externally it resembles the Australian norlobaridone-containing X. dubiata.

Xanthoparmelia neosynestia

Figure 54a

Xanthoparmelia neosynestia Hale, 1986b:588. [Type collection: 41 km NE of Vanrhynsdorp at Vanrhyns Pass along Hwy R27, elev. 800 m, Cape Province, South Africa, Grid 3119 AC, *Hale* 73017, 28 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather brittle, 4–7 cm broad, dark greenish yellow; lobes subirregular to sublinear, 1–2.5 mm wide, elongate and dichotomously branched, imbricate; upper surface uniformly white-maculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, sparsely to moderately rhizinate, the rhizines brown, 0.5–1 mm long, simple. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 µm. Apothecia well developed, adnate, 3–5 mm in diameter, the rim crenate; spores 5–6×9–10 µm.

CHEMISTRY.—Salazinic (major), norstictic (trace), protocetraric (trace), consalazinic, and usnic acids, chalybaltcins unknown (±) (present in holotype).

ILLUSTRATION.—Hale, 1986b, fig. 33.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species has the same distinctive dark greenish cast of *X. synestia* but the lower surface is uniformly pale or in part darker brown but not blackening. Another related species in Namaqualand, X. springbokensis, contains skyrin in the lower medulla. *Xanthoparmelia neosynestia* occurs over a broad area in Namaqualand and southwestern Cape Province on vertical, protected ledges in karoo.

Xanthoparmelia neotaractica

Figure 54b

DESCRIPTION.—Thallus loosely adnate on rock, rather brittle, 5–8 cm broad, yellowish green; lobes sublinear, 1–1.5 mm wide, elongate and divaricately branched; upper surface continuous to very faintly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown to darker brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.3–0.6 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 µm. Apothecia common, sub spindle, 2–3 mm in diameter; spores 5–6×8–9 µm.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1984, fig. 7.

DISTRIBUTION.—Southeastern USA.

COMMENTS.—It is superficially similar to *X. somloensis* but lacks distinct white maculate, contains stictic acid, and occurs only in southeastern USA.

Xanthoparmelia neotumidosa

Figure 54c

Xanthoparmelia neotumidosa Hale, 1986b:588. [Type collection: 78.5 km S of Sutherland on Hwy R354, Cape Province, South Africa, Grid 3220 DC, *Hale* 73019, 29 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on rock or in part...
on soil, often growing in mats on top and sides of sheltered rocks, 8–15 cm broad, light yellowish green; lobes sublinear, 2–6 mm wide, strap-shaped, sparsely branched or becoming laciniate, the laciniae about 0.6–1.0 mm wide; upper surface weakly to distinctly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately to densely rhizinate, the rhizines black, simple to sparsely fuscate, 0.5–1 mm long. Pycnidia abundant; conidia bifusiform, 0.5 × 5–6.7 μm. Apothecia rather rare, adnate, 3–9 mm in diameter; spores 5–6 × 9–12 μm.

CHEMISTRY.—Salazinic, consalazinic (±), and usnic acids, chalybacin unknown (±).

ILLUSTRATION.—Hale, 1986b, fig. 34.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The *X. tasmanica* group encompasses a wide range of variation in lobe width and surface features. *Xanthoparmelia tasmanica* itself is a very common species in South Africa, as well as in North America and Australasia. *Xanthoparmelia neotasmanica* represents a well-defined population with uniform maculate. The East African lichen *X. africana* has more rigid, pulvinate thallus and weaker black maculae.

Xanthoparmelia neotinctina

Figure 54d

Parmelia neotinctina Elix, 1981:363. [Type collection: 1 km N of Tallarock, Vic., Australia, Elix 4856 (MEL, holotype; CBG, isotype).]

Parmelia conspersa var. *constrictans* f. *isidiophora* Müller Argoviensis, 1883:48. [Type collection: Mt. Macedon, Australia, Moffat 38 (G, lectotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 5–12 cm broad, dark yellowish green; lobes subirregular to sublinear, 1.5–4 mm wide, imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 17f), 0.1–0.15 mm in diameter, 0.2–2 mm high, the tips syncorticate, black, becoming densely coralloid branched; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.3–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rare, substipitate, 2–7 mm in diameter; spores 5–7 × 7–9 μm.

CHEMISTRY.—Norstictic (major), salazinic (±), connorstictic (±), and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 11.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—The isidia are usually dense but a chemical test is needed to separate this common Australasian lichen from *X. australasica* and *X. isidiigera*. It is especially common in Tasmania and New Zealand.

Xanthoparmelia neotumidosa

Figure 54e

Xanthoparmelia neotumidosa Hale, 1987b:326. [Type collection: Douse-the-Glim Road, 3 km NE junction with Hwy N7, N of Vanrhynsdorp, Cape Province, South Africa, Grid 3118 BC, *Hale* 78506 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, 4–6 cm broad, firm, light yellowish green; lobes sublinear, 1–2 mm wide, convex and appearing inflated, rather short and irregularly branched, contiguous to subimbricate; upper surface continuous, emaculate, shiny, strongly rugose to almost bullate with age at the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.3–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia well developed, substipitate, 4–5 mm in diameter; spores 5 × 8–9 μm.

CHEMISTRY.—Protocetraric (major), 4-O-demethyldiffractaic (major), 4-O-demethylbarbatic (trace), squamatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 10.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is close to *X. tumidosa*, a more widespread karoo lichen in western Cape Province that lacks 4-O-demethyldiffractaic acid. *Xanthoparmelia duplicata*, a loosely adnate, white-maculate lichen, also from Namaqualand, has the same chemistry in addition to skyrin.

Xanthoparmelia neowebleri

Figure 54f

Xanthoparmelia neowebleri Hale, 1987a:259. [Type collection: 10.5 km E of Drakensberg Garden Hotel, elev. 1700 m, Natal, South Africa, Grid 2929 CD, *Hale* 76663, 4 Oct 1986 (US, holotype; LD, PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, 5–7 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, apically subround, contiguous to imbricate, more or less black rimmed; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia subglobose to cylindrical (Figure 18a), 0.08–0.15 mm in diameter, 0.2–0.4 mm high, the tips syncorticate, darkening, mostly unbranched; upper medulla white, lower medulla in part ochre; lower surface plane, brown, moderately rhizinate, the rhizines simple, brown, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hyphoprotocetraric, 4-O-demethylnotonic, and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1987a, fig. 14.

DISTRIBUTION.—South Africa (Natal, Transvaal).

COMMENTS.—This species is obviously closely related to and can be confused with *X. weberi*, an equally common species in the eastern Drakensbergs in Natal and Transvaal; this species lacks skyrin and has broader lobes and a lighter brown lower surface.
Xanthoparmelia neowomingica

Figure 55a

Xanthoparmelia neowomingica Hale, 1989a:552. [Type collection: 3 mi S of Ward, vicinity of Glacier Lake, Boulder County, Colorado, USA, *Wirth* s.n., 1 Jun 1962 (US, holotype; COLO, isotype).]

Description.—Thallus loosely adnate to nearly free growing on soil, forming orbicular colonies 3–4 cm in diameter, firm, light yellowish green; lobes sublinear, 0.8–2 mm wide, weakly but distinctly convoluted, dichotomously branched at the tips, subascending, soon becoming lacinate with dense masses of weakly terete laciniae 0.3–0.6 mm wide; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to canaliculate with a more or less prominent raised yellowish rim toward the tips, pale brown to brown, moderately to densely rhizinate, the rhizines pale brown or darkening, rather coarse with splayed tips, simple to branched and tufted, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–5 μm. Apothecia rare, substipitate, 2–4 mm in diameter; spores not developed.

Chemistry.—Stictic, constipatic, norstictic, and usnic acids.

Illustration.—Hale, 1989a, fig. 22.

Distribution.—Western USA.

Comments.—This species is closely related to the more common salazinic acid-containing *X. wyomingica*, but it produces terete laciniae. It is known only from the type collection in Colorado.

Xanthoparmelia nigroreagens

Description.—Thallus tightly adnate to adnate, appearing somewhat arcelate at the center, 3–6 cm broad, dull yellowish green or darkening with age; lobes sublinear, 0.8–1.5 mm wide, irregularly branched, black margined at the tips, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked toward the center, soredia and isidia lacking; medulla white; lower surface plane, brown at the apices but black at the center, moderately rhizinate, the rhizines black, slender, simple. Pycnidia not seen. Apothecia substipitate, 1–3 mm in diameter; spores 4–5 × 7–8 μm.

Chemistry.—Constipatic, protoconstipatic, dehydroconstipatic (+minor), and usnic acids, atranorin (minor).

Illustration.—Elix and Johnston, 1988a, fig. 15.

Distribution.—Australia (SA).

Comments.—This rare species occurs in dry, open eucalypt woodland in South Australia. Closely related *X. oleosa* has a pale lower surface. The South African *X. subnigra* also has a black lower surface but is a larger lichen, not so tightly adnate, and has a different fatty-acid profile.

Xanthoparmelia nigropsoromifera

Xanthoparmelia nigropsoromifera Nash, 1974c:320. [Type collection: 8 km N of east end of Lake Roosevelt, Gila Co., Arizona, USA, *Nash* 7416 (ASU, holotype; DUKE, MIN, US, WIS, isotypes).]

Description.—Thallus adnate on rock, 4–7 cm broad, yellowish green; lobes subirregular, 1.5–3 mm wide, obtuse, contiguous to imbricate; upper surface continuous, emaculate, dull, becoming rugose with age, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6 μm. Apothecia common, substipitate, 2–6 mm in diameter; spores 4 × 7–8 μm.

Chemistry.—Psoromic, 2'-O-demethylpsoromic, and usnic acids.

Illustration.—Nash, 1974c, fig. 1.

Distribution.—Southwestern USA.

Comments.—This Sonoran desert lichen is similar to *X. psoromifera*, which has a pale brown lower surface. Another Sonoran endemic, *X. huachucensis*, has a black lower surface and lobes less than 1 mm wide.

Xanthoparmelia nonreagens

Figure 55b

Description.—Thallus tightly adnate to adnate on rock, 2–4 cm broad, coalescing into larger colonies, dull yellowish green but darkening with age; lobes subirregular to sublinear, 1–1.5 mm wide, relatively long and irregularly branched, contiguous to imbricate; upper surface continuous, emaculate, shiny or opaque, transversely cracked with age, densely isidiate, the isidia subglobose to mostly cylindrical (Figure 18b), 0.06–0.1 mm in diameter, 0.1–0.3 mm high, the tips syncorticate to weakly epi-corticate, brownish, simple or sparingly branched with age; medulla white; lower surface plane, pale tan to brown, sparsely to moderately rhizinate, the rhizines pale tan, simple, 0.1–0.3 mm long. Pycnidia lacking. Apothecia well developed, substipitate, 1–4 mm in diameter; spores 4–5 × 7–9 μm.

Chemistry.—Scabrosin 4,4'-dibutyrate, scabrosin 4-acetate, 4'-butyrate, scabrosin 4-acetate, 4'-hexanoate, scabrosin 4,4'-diacetate (±), and usnic acid.

Illustration.—Elix and Johnston, 1987, fig. 7.

Distribution.—Australia (Qld).

Comments.—*Xanthoparmelia immunata*, a close relative, differs in having globose-inflated isidia and constipatic and protoconstipatic acids in addition to the scabrosin derivatives. *Xanthoparmelia remanens* has the same chemistry but the isidia are larger (0.08–0.12 mm in diameter) and clearly erumpent at maturity.
Xanthoparmelia norchlorochroa

Figure 55c

Xanthoparmelia norchlorochroa Hale, 1987b:326. [Type collection: 4 mi S of Malta, Raft River Valley, Cassia County, Idaho, elev. 1300 m, Holmgren 173, 6 Aug 1961 (US, holotype; ANUC, ASU, isotypes).]

DESCRIPTION.—Thallus vagrant, growing free on soil, firm and leathery, breaking up into irregular colonies 5–10 cm broad, dull yellowish green; lobes sublinear, 2–7 mm wide, elongated and contorted, strongly convoluted, sparsely branched, separate to imbricate; upper surface continuous to faintly white-maculate, dull, rugose and reticulately cracked with age, isidia and soredia lacking; medulla white; lower surface plane, dark brown to black, smooth to strongly rugose, rhizines lacking. Pycnidia and apothecia lacking.

CHEMISTRY.—Norsticin, connorstic (±), and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 11.

DISTRIBUTION.—Western USA.

COMMENTS.—The large leathery erzthinate thallus and with a black lower surface is unique among the vagrant species. It has been found only in the desert grazing lands of Idaho, occurring with *X. chlorochroa*, a smaller, salazinic acid-containing plant moderately to densely rhizinate below.

Xanthoparmelia norcolorata

Figure 55d

Xanthoparmelia norcolorata Hale, 1989a:554. [Type collection: On sheltered coarse granite in large koppie, 13.6 km N of Rehoboth on east side of Hwy B2, elev. 1700 m, South West Africa/Namibia, Grid 2317 AA, Hale 81260, 30 Apr 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, 6–8 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, rather short and crowded, pale rimmed, subimbricate, sublobulate, becoming suberect and revolute at the center; upper surface continuous, emaculate, dull, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, simple to sparsely branched, 0.3–0.6 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia substipitate, 1–2 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Norsticin, connorstic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 23.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This rare species falls in the *X. schenckiana* group (see discussions under *X. schenckiana*). It is a smaller, narrower-lobed lichen without salazinic acid.

Xanthoparmelia norconvoluta

Parmelia norconvoluta Elix and Armstrong, 1983:477. [Type collection: Thurla, 9.6 km W of Red Cliffs, Vict., Australia, Willis ix.1940 (MEL, holotype).]

DESCRIPTION.—Thallus vagrant, free growing on soil, leathery, breaking apart, 3–6 cm broad; lobes sublinear, 3–8 mm wide (to 10 mm unrolled), strongly convoluted and involuted, little branched, separate; upper surface continuous, emaculate, dull, fissured and rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, sparsely rhizinate, the rhizines pale brown to brown or blackening, delicate, simple to sparsely branched, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norsticin, connorstic, and usnic acids.

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 8.

DISTRIBUTION.—Australia (Vic, SA).

COMMENTS.—This chemotype of *X. convoluta* has been collected only rarely in mallee scrub and shrubland in arid southern Australia. It parallels *X. chlorochroa*- *X. neoelortochroa* in North America and *X. camtschadalts*- *X. kasachstania* in USSR with norsticin acid replacing salazinic acid.

Xanthoparmelia norhyopsila

Figure 55e

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 5–8 cm broad, dull yellowish green; lobes subirregular to sublinear, 1–1.5 mm wide, contiguous to imbricate, becoming densely lobulate-laciniate at the center, the laciniae dichotomously branched, 0.3–0.5 mm wide, appressed; upper surface continuous, emaculate, shiny, densely isidiate, the isidia cylindrical and in part lobulate and decumbent (Figure 18c), 0.06–0.15 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, darkening, unbranched; medulla white; lower surface plane, shiny, dark brown at the tips and blackening at the center, sparsely rhizinate, rhizines black, simple, 0.2–0.4 mm long. Pycnidia well developed; conidia weakly bifusiform, 0.5 × 5–7 μm. Apothecia lacking.

CHEMISTRY.—Norsticin, connorstic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 12.

DISTRIBUTION.—North-central USA.

COMMENTS.—The partly lobulate, decumbent isidia and chemistry are unusual characters. The species is known only from the type locality. Another norsticin acid-containing species in Wisconsin, *X. dierythra*, has cylindrical isidia and a pale brown lower surface.
Xanthoparmelia norlobarica

Figure 55f

Xanthoparmelia norlobarica Hale, 1989a:554. [Type collection: 3.8 km SW of Montagu in pass area on west side of road, elev. 200 m. Cape Province, South Africa, Grid 3320 CC, *Hale* 72523, 3 Feb 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate, fragmenting easily, 5–7 cm broad, light yellowish green; lobes subirregular, 1–2.5 mm wide, apically rounded, short and irregularly branched, imbricate; upper surface continuous, emaculate, shiny, rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 4–6 μm. Apothecia lacking.

CHEMISTRY.—Norstictic, connorstictic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 30.

DISTRIBUTION.—Australia (SA, WA).

COMMENTS.—This is a homotypic of *X. pomilera* (Salazinic acid present) with a more restricted range on the harsh lateritic soils of arid mallee scrub.

Xanthoparmelia notata

Figure 56c

Xanthoparmelia notata (Kurokawa) Hale, 1974b:488. [Type collection: 5 mi E Nerriga, NSW, Australia, *Kurokawa* 6401 (TNS, holotype; MEL, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on hard lateritic soils, firm, 3–10 cm broad light yellowish green; lobes sublinear, 1–2 mm wide, contiguous to imbricate, dichotomously branched, laciniate at the center, the laciniae becoming terete, 0.2–0.4 mm wide; upper surface continuous, emaculate, dull, isidia and soredia lacking; medulla white; lower surface plane to weakly canaliculate, a marginal rim barely developed, light brown at the tips but black at the center, sparsely to moderately rhizinate, the rhizines black, simple, thin, 0.5–1 mm long. Pycnidia lacking. Apothecia not commonly developed, substipitate, 3–5 mm in diameter; spores 5–6 × 10–11 μm.

CHEMISTRY.—Norstictic, connorstictic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 7.

DISTRIBUTION.—Australia (WA).

COMMENTS.—This unusual member of the *X. walteri* group occurs at the same locality as diffractive acid-containing *X. luderitziana* Hale (above). Both are more brittle and more obviously white-maculate than *X. walteri*, which occurs in the Luderitz region as well.

Xanthoparmelia norpumila

Figure 56a

Xanthoparmelia norpumila Elix and Johnston, 1988b:358. [Type collection: 4 km E of Bulla Bulling, Western Australia, Australia, Elix 21742, 20 Aug 1978 (CBG, holotype).]

DESCRIPTION.—Thallus adnate on rock, 1–3 cm broad, yellow green but darkening with age; lobes subirregular to sublinear, 0.4–0.6 mm wide, short contiguous to imbricate; upper surface continuous, emaculate, shiny, tangentially or irregularly cracked and areolate-rugulose with age, moderately isidiate, the isidia globose, the tips strongly epicorticate, becoming erumpent but not sorediate, rarely branched; 0.15–0.2 mm in diameter to 0.2 mm high; medulla white; lower surface plane, pale to light brown, shiny, the apices darker, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic (major), connorstictic, constipatic (±), protoconstipatic (±), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1988b, fig. 7.

DISTRIBUTION.—Australia (WA).

COMMENTS.—More widespread *X. praegnans* is a somewhat larger lichen with salazinic acid. Chemically similar *X. flindersiana* has broader lobes and contains minor quantities of hypostatic and hyposalazinic acids.
Distribution.—Western USA, Mexico.

Comments.—In the original description Gyelnik stressed the subcrustose, centrally areolate thallus structure yet later (1938a:269, 293) went on to describe *Parmelia arseneana* and *P. tuberculata*, comparing them to *P. novomexicana*. All three type specimens are essentially identical in chemistry and morphology. It is widespread in the southwestern states and California.

Xanthoparmelia oblisata

Figure 56e

Xanthoparmelia oblisata Fletcher and Hale, 1988:279. [Type collection: Monte Aguilhas Negras, Plateau de Retire, Mato Grosso, Brazil, 24°40'S, 44°60'W, Fletcher 10104 (LIR, holotype; US, isotype).]

Description.—Thallus tightly adnate on rock, 3–7 cm broad, yellowish green but soon darkening at the center; lobes sublinear, 0.4–0.8 mm wide, relatively short and irregularly branched, contiguous to subimbricate, sparingly short laciniate, the laciniae 0.1–0.2 mm wide, subscending; upper surface continuous, emaculate, shiny, transversely cracked and rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, shiny, brown to dark brown but not blackening, moderately rhizinate, the rhizines brown, robust, 0.1–0.3 mm long, unbranched. Pycnidia numerous; conidia bifusiform, 0.5 × 4–6 μm long. Apothecia lacking.

Chemistry.—Stictic, constistic, norstictic (trace), and usnic acids.

Illustration.—Fletcher and Hale, 1988, fig. 1.

Distribution.—Brazil.

Comments.—This rare species occurs at high elevation (near 3000 m). It is probably related to isidiate *X. neopropaguloides*, a common lichen in South America.

Xanthoparmelia obscurata

Figure 56f

Xanthoparmelia obscurata Hale, 1987b:327. [Type collection: On sloping sandstone outcrops, 3.5 km NW of Cederberg (Dwarriver), Cederberg Mountains, Cape Province, South Africa, Grid 3219 AC, Hale 78399, 29 Oct 1986 (US, holotype; ANUC, PRE, isotypes).]

Description.—Thallus closely adnate to adnate on rock, rather brittle and not easily removed, 5–8 cm broad, dull yellowish green at the tips but blackening at the center; lobes sublinear, 0.5–1 mm wide, irregularly branched, separate to imbricate but with ascending tips and becoming short laciniate; upper surface continuous, emaculate, shiny at the tips but dull with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines brown, simple, 0.3–0.6 mm long. Pycnidia and apothecia lacking.

Chemistry.—Norlobaridone, an unknown fatty acid, and usnic acid (det. J.A. Elix).
ILLUSTRATION.—Hale, 1987b, fig. 13.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This rare species, easily mistaken for a Neofuscella, is unlike any other African Xanthoparmelia and can only be compared with the Australian X. dubitata, which is very tightly adnate throughout and has an areolate center.

Xanthoparmelia ochropulchra

FIGURE 57a

Xanthoparmelia ochropulchra Hale, 1986b:390. [Type collection: 78.6 km S of Sutherland on Hwy R354, elev. ca. 900 m, Cape Province, South Africa, Grid 3220 DC, Hale 73101, 29 Jan 1986 (US, holotype; PRE, isotype).

Parmelia ochropulchra (Hale) Brusse, 1988:539.]

DESCRIPTION.—Thallus very tightly adnate on rock, soft and friable, 3–8 cm broad, light yellowish green; lobes subirregular, 0.6–1.4 mm wide, contiguous to subimbricate; upper surface continuous to weakly reticulate white-maculate and minutely rugulose at the tips, shiny, isidia and soredia lacking; upper medulla white, lower medulla pale orange; lower surface plane, pale brown, sparsely rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia well developed, adnate, 1–1.5 mm in diameter; spores 5 × 8–9 μm.

CHEMISTRY.—4-O-Demethyldeiffracta (major), 4-O-demethylbarbaric (trace), and usnic acids, endocrocin and an unidentified antraquinone pigment.

ILLUSTRATION.—Hale, 1986b, fig. 36.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The yellow pigments, presence of 4-O-demethyldeiffracta acid (also present in South African X. conjuncta, X. duplicata and X. neotumidosa) and small, friable, short-lobed thallus characterize this rare species. It is known only from the type collection in the Great Karoo.

Xanthoparmelia oleosa

Parmelia oleosa Elix and Armstrong, 1983:478. [Type collection: Tuross River, 13 km S of Countegany, NSW, Australia, Elix 6397 (MEL, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, sometimes appearing areolate in the center, 3–8 cm broad, dull yellowish green or darkening; lobes subirregular to sublinear, 0.8–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugulose, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, adnate, 1–4 mm in diameter; spores 4–5 × 7–8 μm.

CHEMISTRY.—Constipatic, protostipatic, dehydroconstipatic, pertusaric (trace), and usnic acids.

ILLUSTRATION.—Elix and Armstrong, 1983, fig. 9.

DISTRIBUTION.—Australia (NSW, ACT, SA, NT, WA), New Zealand, western USA, Mexico, Argentina.

COMMENTS.—It is chemically similar to the strictly Australian X. ustulata, which has broader, adnate lobes. Xanthoparmelia nigraoleosa is the counterpart with a black lower surface.

Xanthoparmelia olivetorica

FIGURE 57c

Xanthoparmelia olivetorica Hale, 1986b:591. [Type collection: Trail from Plateklipe Gorge to Woodhead Reservoir, Table Mountain Nature Reserve, Cape Province, South Africa, Grid 3318 CD, Hale 72080, 23 Jan 1986 (US, holotype; LD, PRE, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, 2–3 cm broad, yellowish green; lobes sublinear, 0.4–0.6 mm wide, sparsely dichotomously branched, cracked and subareolate toward the center; upper surface continuous, emaculate, shiny, transversely cracked, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norstictic (major), salazinic (major), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 37.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species occurs on sandstone ledges exposed to ocean fog and wind. A similar species from Transvaal and Natal, X. minuta, also contains norstictic and salazinic acids in nearly equal concentration but is isidiate and contains traces of gyrophoric acid. The rare Australian species X. distisfilla is more richly branched and has only traces of salazinic acid.
COMMENTS.—The appressed thallus with very narrow, black-rimmed lobes resembles that of X. stenosporonica, a South African species with stenosporonic acid. The chemistry given in the original description (olivetoric acid) has proved to be incorrect, leaving X. heterodoxa as the only species with olivetoric acid in the genus. It is still only known from the type collection on Table Mountain. The collection number cited in the original publication (72079) was incorrect.

Xanthoparmelia oribensis

Figure 57d

Xanthoparmelia oribensis Hale, 1986b:592. [Type collection: Oribi Gorge Nature Reserve, elev. 300 m, Natal, South Africa, Grid 3030 CB, Hale 74041, 3 Feb 1986 (US, holotype; LD, PRE, isotypes].

DESCRIPTION.—Thallus adnate on flat rocks, 6-12 cm broad, yellowish green; lobes subirregular to sublinear, 2-4 mm wide, contiguous; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately to densely isidiate, the isidia tall, cylindrical (Figure 18d), the tips syncorticate, shiny, darkening, becoming richly branched, 0.09-0.2 mm in diameter, 0.5-1 mm high; upper medulla white, lower medulla in part orange-red; lower surface plane, black but ochre when lower cortex breaks open, sparsely to moderately rhizinate, the rhizines black, simple, 0.5-1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids, skyrin and several minor unidentified components.

ILLUSTRATION.—Hale, 1986b, fig. 39.

DISTRIBUTION.—South Africa (Natal).

COMMENTS.—The only other isidiate species with hypoprotocetraric acid and a black lower surface is tightly adnate, skyrin-free X. neocongensis. *Xanthoparmelia oribensis* is most common on sandstone cliff tops in the humid, subtropical Oribi Gorge area in Natal.

Xanthoparmelia pachyclada

Figure 57e

Xanthoparmelia pachyclada Hale, 1987a:261. [Type collection: 38.2 km NNW of Van Rhynsdorp on E side of hwy N7, elev. 200 m, Cape Province, South Africa, Grid 3118 BC, Hale 78858, 31 Oct 1986 (US, holotype; ANUC, LD, PRE, isotypes].

DESCRIPTION.—Thallus vagrant, free-growing on soil, leathery and gnarled, dispersed as separate colonies 3-5 cm broad, yellowish green; lobes sublinear, 2-5 mm wide, strongly convoluted and twisted, tube-like, little branched; upper surface continuous, emaculate, shiny, heavily rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, erhzinate or very sparsely rhizinate, the rhizines brown, simple, -0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 15.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This Namaqualand knersvlakte soil lichen has a typical vagrant growth form. It is chemically related to another soil lichen, X. neocongensis, which has weakly convoluted lobes and skyrin and which could conceivably be the progenitor of this vagrant species.

Xanthoparmelia paradoxa

Figure 57f

Xanthoparmelia paradoxa Hale, 1987a:261. [Type collection: E side of hwy R46, 2 km NW of hwy N2 (W of Touwsrivier), elev. 900 m, Cape Province, South Africa, Grid 3319 BD, Hale 78697, 28 Oct 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate, firm and leathery, 7-9 cm broad, deep yellow green; lobes sublinear or subirregular, the lobe tips obtuse, 1-3 mm wide, contiguous; upper surface continuous, emaculate to very faintly reticulate white-maculate, shiny, becoming strongly rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, dull, pale brown but darkening toward the tips, densely rhizinate, the rhizines pale brown, simple, 0.5-1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5-6 μm. Apothecia abundant, adnate to substipitate, 3-15 mm in diameter, the amphithecium strongly rugose; spores 6 × 9-10 μm.
Xanthoparmelia parvoclystoides

Figure 58a

Xanthoparmelia parvoclystoides Elix and Johnston, 1988b:360. [Type collection: 6.5 km W of Springfield on High Eden Road, Mt. Lofty Ranges, South Australia, Australia, Elix 2252 (CBG, holotype].

DESCRIPTION.—Thallus tightly adnate on rock, 5–7 cm broad, appearing areolate at the center, yellowish green but darkening with age; lobes sublinear, 0.5–1.1 mm wide, irregularly branched, contiguous to imbricate; upper surface continuous, emaculate, opaque, irregularly cracked with age, soredia and isidia lacking; medulla white; lower surface plane, pale tan but darkening at the tips, moderately to densely rhizinate, the rhizines brown, simple, 0.1–0.2 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 6–7 μm. Apothecia sessile to subistipitate, 1–4 mm in diameter; 4–6 × 9–11 μm.

CHEMISTRY.—Norstictic (major), connorstictic (minor), salazinic (±minor), and usnic acids, atranorin (±minor).

ILLUSTRATION.—Elix and Johnston, 1988b, fig. 8.

DISTRIBUTION.—Australia (WA, SA).

COMMENTS.—Closely related X. neorimalis with a wide distribution in semi-arid Australia contains salazinic acid as the major component. Xanthoparmelia parvoclystoides is most common in cooler, wetter areas of South Australia and West Australia.

Xanthoparmelia parvoincerta

Figure 58b

DESCRIPTION.—Thallus tightly adnate on rock, forming rosettes 1–2 cm broad, the center becoming areolate, yellowish green; lobes sublinear, 0.5–1.5 mm wide, contiguous to subimbricate, sometimes black rimmed; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, rather coarse, simple, 0.2–0.4 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subistipitate, 1 mm in diameter; spores 5–6 × 8 μm.

CHEMISTRY.—Salazinic, consalazinic, constipatic (±), protoconstipatic (±), and usnic acids, atranorin (±).

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 31.

DISTRIBUTION.—Australia (NT, WA), South Africa (Transvaal, Cape Province).

COMMENTS.—This rare species is intermediate between X. dissitifolia (norstictic acid present), an Australian species with very narrow lobes (0.2–0.5 mm wide), and X. incerta, a larger lichen with broad lobes (1–3 mm).

Xanthoparmelia perplexa, new combination

Figure 58c

Xanthoparmelia perplexa Stizemberger, 1980:154. [Type collection: Near Ceres, Warme Bokvei Mountains, South Africa, MacOwan s.n. (ZT, lectotype).]

Xanthoparmelia subrustosa Hale, 1986b:600. [Type collection: On granite boulders in karoo, 8.3 km E of Garies on Studerpas road, Cape Province, South Africa, Grid 3018 AC, Hale 73016, 26 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 3–10 cm broad, darkish yellow green; lobes sublinear, 0.4–0.8 mm wide, short and irregularly branched, crowded and bяетилотricoleolate at the center, becoming short laciniate, black-rimmed; upper surface continuous, emaculate, shiny, transversely cracked and rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, light to dark brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.3 mm long. Pycnidia numerous; conidia cylindrical, 0.5 × 5–8 μm. Apothecia adnate, 0.5–1 mm in diameter; spores 4–6 × 8–10 μm.

CHEMISTRY.—Salazinic (major), norstictic (±trace), connorstictic (±trace), and usnic acids, chalybazione unknown.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This rare species is known only in the southwestern Cape region. It is superficially close to other “centrally areolate” species such as Australasian X. neorimalis (salazinic acid present).

Xanthoparmelia perrugosa

Figure 58d

Xanthoparmelia perrugosa Hale, 1987a:262. [Type collection: Mountain Zebra National Park, SW of Cradock, elev. 1500 m, Cape Province, South Africa, Grid 3225 AB, Hale 77940, 14 Oct 1986 (US, holotype; LD, PRE, isotypes].

DESCRIPTION.—Thallus adnate to loosely adnate on rock, easily removed intact when moist, leathery, 6–9 cm broad, light yellow green; lobes subirregular with rotund tips, 2–4 mm wide, contiguous, soon becoming uniformly bullate-wrinkled at the center; upper surface continuous, emaculate, shiny, transversely cracked and bullate-rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple,
Xanthoparmelia pertinax

Xanthoparmelia pertinax (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:306.

Parmelia pertinax Kurokawa and Filson, 1975:e1. [Type collection: Western side of Conuma Range, Eyre Peninsula, S.A., Australia, Filson 11728 (MEIL, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 4–8 cm broad, yellowish olive-green; lobes subirregular, 1–2.5 mm wide, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines dark brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6 μm. Apothecia common, substipitate, 2–4 mm in diameter; spores 6–7 × 9–10 μm.

CHEMISTRY.—Funarprotectaric (major), succinprotectaric, protectaric (citrate), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 2: fig. 4.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, SA, WA).

COMMENTS.—This widespread Australian species is narrowly close to X. lineola, a salazinic acid-containing species. The American species X. novomexicana lacks succinprotectaric.

Xanthoparmelia peruviensis

Xanthoparmelia peruviensis Hale, 1985a:284. [Type collection: Santa Rosa, Cuzco, Peru, D. Stafford 532 (BM, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely adnate to free growing on soil, 3–5 cm broad; lobes linear to sublinear, 0.7–1.2 mm wide, dichotomously branched and divaricate, the ultimate tips terete; upper surface faintly reticulate white-maculate, isidia and soredia lacking; medulla white; lower surface plane to canaliculate, the marginal rim pale yellowish, the center brown, densely rhizinate, the rhizines furcate, brown, to 2 mm long. Pycnidia present; conidia not seen. Apothecia adnate, -1 mm in diameter; spores lacking.

CHEMISTRY.—Stenosporonic (major), lobaric (minor), and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Hale, 1985a, fig. 6.

DISTRIBUTION.—Peru, Bolivia.

COMMENTS.—This unusual terricolous lichen is known from several localities at higher elevations (up to 4200 m) in Bolivia and Peru. Reticulate maculation is rarely encountered in the genus (cf. X. competita), and the chemistry (first reported as colensoic acid) is more typical of tightly adnate, saxicolous Old World species such as X. keralensis and X. stenosporonica. The lichenin test is negative (R. Common, personal communication), indicating an isolated position in the genus for this species.

Xanthoparmelia phaeophana

Parmelia phaeophana Stirton, 1987:214. [Type collection: [Somerset East], South Africa, McOwan s.n. (BM, lectotype; GLAM, isotype)].

Parmelia phaeophana var. stenoiana Stirton, 1987:215. [Type collection: [Near Klyn Visch River, Somerset East, South Africa], McOwan [50] (BM, lectotype; BP, GLAM, isotype)].

Parmelia subfuscescens Nylander, 1885:613. [Type collection: Mauritius, s.c. (H-Nyl, lectotype)].

Parmelia tarenkella Steiner and Zahlbruckner in Zahlbruckner, 1926:510. [Type collection: Port Elizabeth, Republic of South Africa, Brunthaler s.n. (WU, lectotype).

Parmelia cinnarreagens Gyelnik, 1931b:282. [Type collection: Enon, South Africa, Breuel s.n. (BP, lectotype; designated type in Boulby de Lesdain herbarium destroyed)].

Parmelia cinnarreagens var. angustior Gyelnik, 1931b:282. [Type collection: Table Mountain, Cape Province, South Africa, Wilsa [2754] (BP, lectotype; designated type in Boulby de Lesdain herbarium destroyed)].

Parmelia digulata f. angustior (Gyelnik) Gyelnik, 1934b:370. [Listed in key without citation of basionym].

Parmelia digulata f. cinnarreagens (Gyelnik) Gyelnik, 1934b:370. [Listed in key without citation of basionym].

Parmelia cinnarreagens Gyelnik, 1934:154. [Invalid combination with citation of basionym].

Parmelia cinnarreagens (Gyelnik) Gyelnik, 1934c:156. [Type collection: Montague Pass, South Africa, Breuel s.n. (BP, lectotype; designated type in Boulby de Lesdain herbarium destroyed)].

Parmelia subsanulosa var. africana Gyelnik, 1934a:164. [Type collection: Near Adelaide, South Africa, Ringon (7) 859 (BP, lectotype; W, isotype)].

Parmelia digulata f. cinnarreagens (Gyelnik) Gyelnik, 1935:32.

Parmelia cinnarreagens var. tarenkella (Steiner and Zahlbruckner) Gyelnik, 1936:123.

Parmelia cinnarreagens var. angustior (Gyelnik) Gyelnik, 1938b:21.

Parmelia cinnarreagens var. cinnarreagens (Gyelnik) Gyelnik, 1938b:21.

Parmelia cinnarreagens f. subfuscescens (Gyelnik) Gyelnik, 1938b:22.

Parmelia cinnarreagens f. cinnarreagens (Gyelnik) Gyelnik, 1938b:27.

Parmelia cinnarreagens f. cinnarreagens (Gyelnik) Gyelnik, 1938b:35.

Parmelia cinnarreagens f. cinnarreagens (Gyelnik) Gyelnik, 1938b:35.
Distr., S. Rhodesia, Eyles 832 (BM, holotype, FH-Dodge, isotype).

Parmelia stenotera (Stirton) Dodge, 1959:73.

Parmelia wightii Dodge, 1959:69. [Type collection: Mauritius, Wight s.n. (FH-Tayl, holotype).]

Parmelia wightii Dodge, 1959:128. [Type collection: Simons Bay, Cape of Good Hope, South Africa, Wright s.n. (FH-Tuck, lectotype; US, is lectotype).]

Xanthoparmelia subsfuscescens (Nylander) Hale, 1974b:489.

Xanthoparmelia nuwarenseis Hale, 1986b:590. [Type collection: 1 km S of Nuwens on Hwy 363, elev. ca. 500 m, Cape Province, South Africa, Grid 3118 AB, Hale 72111, 26 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely on soil, fairly rigid, 6–15 cm broad, dull yellowish green to light yellowish green; lobes sublinear, extremely variable, 2–10 mm wide, rather elongate and separate to contiguous, in part subascending and lacinate; upper surface more or less uniformly white-maculate, shiny, isidial and soredial lacking; medulla white; lower surface plane, becoming rugose with age, pale brown to brown, blackening near the tips, sparsely to moderately rhizinate but often with extensive exuding bare areas, the rhizines pale brown, simple to splayed or furcate, 0.5–1 mm long. Pycnidia common; conidia biserifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 3–15 mm in diameter; spores 5–6 × 10–12 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, protocetraric (±), phylodial (±), virenic (±), capeartic (±), and usnic acids.

ILLUSTRATION.—Swinscow and Krog, 1988, fig. 184.

DISTRIBUTION.—Bourbon, Madagascar, Malawi, Kenya, Uganda, South Africa (Transvaal, Venda, Natal, OPF, Natal, Transkei, Ciskei, Cape Province), Swaziland, Lesotho, Zimbabwe, Mauritius, Kerguelen Island.

COMMENTS.—The typification of this most common of all Xanthoparmeliae in southern Africa has had a complicated history. I originally adopted the name P. subconspersa Nylander, but Gylénik (1935:49) had already typified this name with a Flavoparmelia rutiloida specimen from Australia mentioned in Nylander's protologue (H-Nyl herb, no. 34698). Nylander and other nineteenth-century lichenologists consistently identified X. phaeophana as P. subconspersa in their herbaria and his syntype from Bourbon is indeed X. phaeophana. Strangely Nylander (1885:613) did not recognize Parmelia subsfuscescens as a Xanthoparmelia.

The synonym of X. phaeophana is extremely large considering that the distinctive morphological characters, broad sublinear lobes, loose adnation, lower surface with large bare areas, white-maculate upper surface, and the distinctive chemistry are easily recognized. There is, as one would expect in such a large population, a wide range of variation in lobe configuration, density and distribution of rhizines on the lower surface, and thallus size. I have removed one small population with an adnate thallus and an emaculate surface: X. cerasina. Xanthoparmelia phaeophana is far and away the commonest species of Xanthoparmelia in southern Africa, occurring in a wide range of habitats but more common in the higher rainfall areas, least common in more arid karoo sites.

Xanthoparmelia phillipsiana

FIGURE 59a

Parmelia phillipsiana Filson, 1981:324. [Type collection: 1 km S of Double Point, west side of Macquarie Island, Filson 5904 (MEL, holotype).]

DESCRIPTION.—Thallus adnate on rock, 3–6 cm broad; light to darkish yellow green; lobes sublinear, 0.5–1 mm wide, appearing convex, contiguous to subimbricate; upper surface continuous, emaculate, shiny, transversely cracked, becoming densely isidiate, the isidia cylindrical (Figure 18e), large in relation to lobe width, 0.1–0.15 mm in diameter, to 1 mm high, the tips syncortic to epicortic, simple to coralloid branched at maturity; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, substipitate, 2–8 mm in diameter; spores 6 × 9 μm.

CHEMISTRY.—Stictic, constictic, norstictic (trace), cryptostictic (trace), and usnic acids.

ILLUSTRATION.—Filson, 1981, fig. 6.

DISTRIBUTION.—Australia (Tas), New Zealand, Macquarie Island.

COMMENTS.—This curious lichen has a unique aspect among the species in the X. conspersa group with its narrow, convex lobes and coralloid isidia that are disproportionately large for a thin thallus. It is related to X. conspersa, a larger lichen not yet collected in Australasia. Xanthoparmelia mougeotina is much smaller, darker, and very tightly adnate, as well as sparsely isidiate.

Xanthoparmelia piedmontensis

FIGURE 59b

Xanthoparmelia piedmontensis (Hale) Hale, 1974b:488.

Parmelia piedmontensis Hale, 1964:468. [Type collection: Mt. Arabia, near Conyers, Rockdale Co., Georgia, USA, Hale 24016 (US, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 2–8 cm broad, darkish yellow green; lobes subirregular, 1.5–3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia subglobose to cylindrical (Figure 18f), 0.07–0.1 mm in diameter, 0.1–0.3 mm high, the tips syncortic, darkening, simple to coralloid branched at maturity; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple. 0.2–0.6 mm long. Pycnidia lacking. Apothecia common, substipitate,
2–8 mm in diameter; spores 4–5 × 5–6 μm.

Chemistry.—Fumarprotocetraric and usnic acids.

Distribution.—Southeastern USA.

Comments.—This rare Piedmont lichen could be the isidiate morph of *X. hypomelaena* but the thallus is not as tightly adnate.

Xanthoparmelia planilobata

Figure 59c

Xanthoparmelia planilobata (Gyelnik) Hale, 1988b:405.

Parelia conspersa f. planilobata Gyelnik, 1938a:275. [Type collection: Little Besaque, Santa Fe, New Mexico, USA, *Arsène* 22298, 1 Aug 1935 (BP, lectotype; designated type in Buley de Lestain herbarium destroyed).]

Description.—Thallus loosely adnate on soil or soil over rocks, rather fragile, pulvinate, 2–4 cm broad, darkish yellow green; lobes sublinear, 0.3–0.8 mm wide, elongate and sparsely dichotomously branched, imbricate and somewhat ascending, black rimmed, developing marginal laciniae; upper surface continuous, emaculate, shiny to dull, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, finely rugose, very sparsely rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia poorly developed; conidia not found. Apothecia rather rare, subistipitate, 2–4 mm in diameter; spores poorly developed, 5 × 9 μm.

Chemistry.—Stictic, constictic, norstictic, and usnic acids.

Distribution.—Western USA, Mexico.

Comments.—A closely related species from Australasia and South Africa, *X. tegeta*, has a smooth, uniformly rhizinate lower surface, broader lobes, and is usually more adnate on rocks. *Xanthoparmelia planilobata* is known from several localities in New Mexico.

Xanthoparmelia plittii

Xanthoparmelia plittii (Gyelnik) Hale, 1974b:488.

Parelia plittii Gyelnik, 1931b:287. [Type collection: Liberty Road at Gwynna Falls, Baltimore County, Maryland, USA, *Plit P-5* (BP, lectotype; US, islectotype).]

Description.—Thallus adnate to loosely adnate on rock, rarely tree bark, 4–10 cm broad, yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 18g), 0.08–0.15 mm in diameter, 0.1–0.5 mm high, the tips syncorticulate, darkening, simple or becoming densely branched with age; medulla white; lower surface plane, pale brown or darkening, but not blackening, moderately rhizinate, the rhizines pale brown, simple to furcate, 0.3–0.6 mm long. Pycnidia uncommon; conidia bicuspidiferiform, 0.5 × 5–7 μm. Apothecia common, subistipitate, 2–7 mm in diameter; spores 4–5 × 9–10 μm.

Chemistry.—Stictic, constictic, norstictic, and usnic acids.

Distribution.—North America, Mexico, Guatemala, Cuba, Dominican Republic, Venezuela, Colombia, Brazil, Paraguay, Uruguay, Angola, South Africa (Transvaal, Venda, Natal).

Comments.—This widespread temperate-subtropical species is closely related to nonisidiate *X. cumberlandia*. In eastern North America it grows in more shaded habitats than *X. conspersa*, which has a black lower surface. *Xanthoparmelia subplittii* from South America has globose, erumpent isidia, and *X. neopropaguloides* is tightly adnate and narrow lobed (0.4–0.8 mm wide).

Xanthoparmelia praegnans

Parelia praegnans Elix and Armstrong, 1983:479. [Type collection: 11.2 km N of North Creek, Maree-Oodnadatta Road, S.A., Australia, *Filson* 15626a (MEL, holotype).]

Description.—Thallus tightly adnate on rock, sometimes appearing acarolate at the center, 2–5 cm broad, dull yellowish green; lobes sublinear, 0.8–1.5 mm wide, short, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia globose to subcylindrical and inflated at apices (Figure 18h), 0.07–0.15 mm in diameter, 0.1–0.3 mm high, the tips syncorticulate, darkening, in part erumpent or abrading but not sorediate, unbranched; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown to brown, simple, 0.2–0.5 mm long. Pycnidia lacking. Apothecia common, subistipitate, 1–3 mm in diameter; spores 5–6 × 7–8 μm.

Chemistry.—Salazinic, consalazinic, norstictic (±trace), protocetraric (±trace), constictic (±trace), protoconstictic (±trace), and usnic acids.

Illustration.—Elix and Armstrong, 1983, fig. 10.

Distribution.—Australia (Qld, SA, NT, WA).

Comments.—This widespread species occurs in arid inland localities. The related Namibian species *X. tenacea* is a smaller lichen with a consistently brown lower surface.

Xanthoparmelia probarbellata

Figure 59d

Xanthoparmelia probarbellata Hale, 1986b:592. [Type collection: 52.5 km SE of Lady Grey on Hwy R58, elev. ca. 1900 m, Cape Province, South Africa, Grid 3027 CD, *Hale* 72109, 9 Feb 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus adnate on rock, 4–6 cm broad, yellowish green; lobes sublinear, 2–3 mm wide, somewhat separate to contiguous; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper white, lower medulla ochre in part; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines brown, 0.5–1 mm long.
Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 µm. Apothecia numerous, adnate, 3–5 mm in diameter; spores 5–6 × 8–9 µm.

CHEMISTRY.—Salazinic and norstictic acids in nearly equal concentration, chalybaeizans unknown (trace), usnic acid, and skyrin.

ILLUSTRATION.—Hale, 1986b, fig. 40.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—An Australian species, X. barbellata, has similar chemistry (except for the lack of the chalybaeizans unknown) but is more loosely adnate and may occur on soil as well as rocks.

Xanthoparmelia prodomokosii

Xanthoparmelia prodomokosii Hale, Elix, and Johnston in Elix and Johnston, 1988a:506. [Type collection: MacDonnell Range, 1 km E of Pine Gap, Northern Territory, Australia, Elix 11309, 17 Sep 1983 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 5–8 cm broad, light yellowish green; lobes subirregular, 1.5–2.5 mm wide, short and irregularly branched, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked and bullate-rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 µm. Apothecia substipitate; spores 4–5 × 6–8 µm.

CHEMISTRY.—Hydropseudotetaric, 4-O-demethylmotonic (±trace), and usnic acids, scabrosin-4-acetate-4'-butyrate, scabrosin-4,4'-diacetate, scabrosin-4,4'-dibutyrate, and scabrosin-4-acetate-4'-hexanoate.

ILLUSTRATION.—Elix and Johnston, 1988a, fig. 16.

DISTRIBUTION.—Australia (NT), South Africa (Cape Province).

COMMENTS.—This species is close to X. subdomokosii, which has a pale lower surface, is more loosely adnate, and contains skyrin. Xanthoparmelia domokosii, a tightly adnate South African lichen, has a black lower surface.

Xanthoparmelia prodomokosii

Xanthoparmelia protodysprosa Hale, 1988a:262. [Type collection: 3.4 km S of Van Wyksdorp on hwy R327, elev. 250 m, Cape Province, South Africa, Grid 3321 DD, Hale 77712, 19 Oct 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on slate, 3–5 cm broad, light yellowish green; lobes sublinear to linear, 1–2 mm wide, dichotomously branched, elongate, subascending, separate to imbricate; upper surface weakly to strongly effigurate-maculate, shiny, rugulose and transversely cracked with age, isidia and soredia lacking; medulla white; lower surface spongy, shiny, black, very sparsely rhizinate, the rhizines coarse, simple with splayed tips, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 µm. Apothecia lacking.

CHEMISTRY.—Lecanicor and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 18.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This chemistry is within the X. hypoleia complex. The upper surface is not as strongly effigurate-maculate as other members of this complex, however, and the thallus is rather soft, not at all stiff. It is known only from the type collection in Namaqualand.

Xanthoparmelia protolusitana

Xanthoparmelia protolusitana Hale, 1989a:554. [Type collection: On low sandstone ledges along small stream, 9 km W of Ramatsilo Nek, elev. 2400 m, Lesotho, Grid 3028 BB, Hale 81342, 28 Apr 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather stiff, 4–8 cm broad, darkish yellow green; lobes subirregular to sublinear, 0.7–2 mm wide, imbricate, becoming laciniate, the laciniæ subinear, 0.2–0.4 mm wide, black rimmed; upper surface continuous, emaculate, shiny, rugulose and sparsely transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black and shiny, sparsely to moderately rhizinate, the rhizines black, simple, 0.3–0.5 mm long. Pycnidia lacking. Apothecia numerous, substipitate, 1–4 mm in diameter; spores not found.

CHEMISTRY.—Stictic, constictic, and usnic acids, lusitanic unknown.

ILLUSTRATION.—Hale, 1989a, fig. 26.

DISTRIBUTION.—Lesotho.

COMMENTS.—Although related to X. angustiphylly, the thallus is rather stiff. It has been collected two times in the high sandstone Drakensberg escarpment in Lesotho. The lack of norstictic acid and presence of the "lusitana" unknown (a faintly reacting yellowish spot below norstictic acid) suggest a closer relationship with the isidiate species X. verrucigera. The collection number cited in the original publication (81205) was incorrect.

Xanthoparmelia protomatrae

Xanthoparmelia protomatrae (Gyelnik) Hale, 1974b:488.

Parmelia protomatrae Gyelnik, 1931a:155. [Type collection: Mt. Vadilókővek, near Budapest, Hungary, Gyelnik s.n. (BP, lectotype; H, isotype).]

Parmelia protomatrae f. angustifolia Gyelnik, 1931a:155. [Type collection: Mt. Hegyes, Mátra Mountains, Hungary, Gyelnik s.n. (BP, lectotype).]

Parmelia protomatrae f. crustataformis Gyelnik, 1931a:155. [Type collection: Mt. Ajánáscsó, Mátra Mountains, Hungary, Gyelnik s.n. (BP, lectotype).]

Parmelia protomatrae var. tenuior Gyelnik, 1931a:155. [Type collection: Pulvertum, Alba Carolinae, Hungary, Haynald s.n. (BP, lectotype).]

Parmelia mirovicensis Gyelnik, 1932a:216. [Type collection: Mitrovia,
Xanthoparmelia protoquintaria

DESCRIPTION.—Thallus tightly adnate on rock, 2–4 cm broad, darkish yellow green; lobes subirregular to sublinear, 0.4–0.9 mm wide, short, dichotomously branched, contiguous to subimbricate; upper cortex continuous, emaculate, shiny, transversely cracked at the center, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, moderately rhizinate, the rhizines black, simple to furcate, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypostictic, hyposalazinic, hypoconstrictic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 27.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The only other hypostictic acid-containing Xanthoparmelia with a black lower surface is the Australian X. multipartita, which is a loosely adnate, linear-lobed species. The present species is known only from the type collection on ocean-facing ledges in southwestern Cape Province.

Xanthoparmelia proximata

DESCRIPTION.—Thallus tightly adnate on rock, 5–7 cm broad, dull yellowish green; lobes sublinear, 0.4–1 mm wide, short and imbricate, dichotomously branched, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, shiny, black, moderately rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia commonly developed; conidia bifusiform, 5–6 μm. Apothecia well developed, adnate, 1–1.5 mm in diameter; spores 6–7 × 10–12 μm.

CHEMISTRY.—Salazinic (major), norstictic (minor), conalazinic (trace), protocetraric (trace), unknown fatty Rf32, 36, and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987a, fig. 19.

DISTRIBUTION.—South Africa (Transvaal).

COMMENTS.—This chemistry, the co-occurrence of significant amounts of salazinic and norstictic acids, is relatively rare in South African Xanthoparmeliae. One species, X. olifantensis, is also tightly adnate but has smaller, separate lobes 0.4–0.6 mm wide. Another, X. minuta, is isidiate and contains traces of gyrophoric acid.

Xanthoparmelia pseudoamphixantha

Parmelia pseudoamphixantha Elix, 1981:365. [Type collection: 30 km W of Ouyen along Highway 12, Victoria, Australia, Elix 3682 (MEL, holotype).]

DESCRIPTION.—Thallus loosely adnate to free growing on soil, forming rosettes 2–6 cm broad, yellowish green; lobes sublinear, 0.6–1.5 mm wide, elongate, dichotomously branched, separate to loosely imbricate; upper surface strongly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface canaliculate with a raised marginal rim, ivory colored to brown, sparsely to moderately rhizinate, the
rhizines rarely sparsely branched, dark brown to black, 1–2 mm long, simple to furcate and projecting out from below. Pycnidia lacking. Apothecia rare, subapitulate, 1–1.5 mm in diameter; spores 4–5 × 6–7 μm.

Chemistry.—Norstictic, connorstictic, salazinic (trace), hyposalazinic (trace), and usnic acids.

Illustration.—Elix, 1981, fig. 12.

Distribution.—Australia (NSW, Vic, SA).

Comments.—Morphologically indistinguishable X. amphi-xanthia is more common and ranges into Tasmania. A third member of this characteristically Australian group of soil lichens, X. reptans, has the broadest range, from western Australia to New Zealand. A chemical test is necessary for identification.

Xanthoparmelia pseudocongensis

Description.—Thallus tightly adnate, 2–6 cm broad, light yellowish green or darkening; lobes sublinear, 0.3–0.8 mm wide, short dichotomously branched, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny or becoming dull at the center, moderately isidiate, the isidia cylindrical (Figure 18l), 0.04–0.09 mm in diameter, to 1 mm high, the tips syncorticate, black, unbranched; medulla white; lower surface plane, black, shiny, moderately rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia rarely developed; conidia 0.5 × 4–5 μm. Apothecia rare, adnate, 1–2 mm in diameter, spores 5–6 × 8–9 μm.

Chemistry.—Stictic, connorstictic, and usnic acids.

Illustration.—Hale, 1987b, fig. 14.

Distribution.—South Africa (Transvaal, Venda, Natal, OFS).

Comments.—This South African species, previously confused with *X. congestis*, has short, blunt, black-rimmed lobes and cylindrical, black-tipped isidia. *Xanthoparmelia substenophylloides*, a more widespread species, has elongate, pale-rimmed lobes. Australasian *X. maugeotina* has a dark, centrally areolate thallus.

Xanthoparmelia pseudohungarica

![Figure 60e](image)

Xanthoparmelia pseudo hungarica (Gyelnik) Hale, 1988b:405.

* Parmelia convoluta var. pseudo hungarica* Gyelnik, 1931b:285. [Type collection: Veszprem, Pest, Hungary, Boros s.n. (BP, lectotype.)]

* Parmelia pseudo hungarica* (Gyelnik) Gyelnik, 1932a:217.

* Parmelia conspersa var. pulvinaris* Zahlbruckner, 1925, no. 618. [Type collection: Szikrapszta near Alpar, Pest, Hungary, Timkó s.n. (W, lectotype; BM, BP, FH, H, L, LD, M, UPS, US, isocryptotypes.)]

Description.—Thallus loosely adnate to free growing on soil, firm, forming discrete subpulvinate colonies 3–8 cm broad, dull yellowish green; lobes sublinear, 1–3 mm wide, rather short but irregularly branched and dissected, coarsely short laciniate with broadly revolute tips, separate to imbricate; upper surface faintly but distinctly white-maculate, shiny, isidia and soreidia lacking; medulla white; lower surface plane to weakly convoluted, sometimes with a raised yellowish rim toward the tips, shiny, smooth to rugulose, brown to dark brown, moderately to densely rhizinate, the rhizines brown, simple to furcate, 0.3–0.8 mm long. Pycnidia and apothecia lacking.

Chemistry.—Salazinic, consalazinic (±), and usnic acids.

Distribution.—Hungary, Czechoslovakia, Yugoslavia.

Comments.—This species is widespread in eastern and central Europe on sterile soils. It can be differentiated from *X. somloensis* and *X. subdiffusa* by the short dissected-laciniate, revolute lobes, dense rhizines, and the terricolous habit. Gyelnik (1937a) realized belatedly that the epithet *pulvinaris* had not previously been validly published, although he had already validly published *Parmelia pseudo hungarica*.

Xanthoparmelia pseudohypoleia

![Figure 60f](image)

* Parmelia pseudohypoleia* Elix, 1976:667. [Type collection: Paddy’s River, near Murray’s Corner, A.C.T., Australia, Elix 1749 (MEL, holotype; CANB, isotype.)]
DESCRIPTION.—Thallus loosely adnate on rock, somewhat pulvinate, firm, 5–8 cm broad, dull yellowish green; lobes sublinear to linear, 0.5–1 mm wide, more or less dichotomously branched, separate to loosely imbricate; upper surface effigurate-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, coarse, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 3–7 mm in diameter; spores 4–5 × 6–8 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric (±trace), protocetraric (±trace), lobaric (±), and usnic acids.

ILLUSTRATION.—Elix, 1976, fig. 3.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas), South Africa (Cape Province).

COMMENTS.—This is a member of the X. hypoleia group characterized by the presence of fumarprotocetraric acid. See further discussions under X. hypoleia.

Xanthoparmelia psoromistica

Figure 61a

Xanthoparmelia psoromistica Hale, 1989a:556. [Type collection: On coarse granite outcrops in pasture, 18 km NE of Keimoes on S side of Hwy R27, elev. 900 m, Cape Province, South Africa, Grid 2821 CA, Hale 79495, 17 Mar 1988 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm and leathery, 5–7 cm broad, light yellowish green; lobes subirregular with rotund tips, 1.5–3 mm wide, relatively short and crowded; upper surface continuous, emaculate, dull, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, brown at the tips but black toward the center, sparsely to moderately rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia substipitate, 1–3 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Psoromic (major), norstictic (major), and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 28.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—A narrow-lobed member of the *X. schenkiana* group, this species has a unique combination of acids. It was abundant at the type locality, an arid desert site, but has not been found elsewhere. See further discussions under *X. schenkiana*.

Xanthoparmelia psoromica

Figure 61b

Xanthoparmelia psoromica Hale, 1987b:327. [Type collection: 28.5 km N of Barkly Pass on Hwy R933, elev. 2200 m, Cape Province, South Africa, Grid 3127 BH, Hale 77030, 10 Oct 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, 7–12 cm broad, light yellowish green; lobes subirregular, 3–7 mm wide, apically round, contiguous to imbricate; upper surface continuous, emaculate, dull, rarely weakly pruinose, rugose with age, isidia and soredia lacking; medulla white, lower medulla in part dull orange-red; lower surface plane, dark brown at the tips, blackening at the center, rugulose with age, moderately rhizinate, the rhizines black, rather coarse, simple, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–5 mm in diameter, the rim incurved, the disc often white pruinose; spores 6 × 9–11 μm.

CHEMISTRY.—Psoromic, 2′-O-demethylpsoromic, stenosporonic (±), caperatic (±), and usnic acids, schenkiana pigment (±).

ILLUSTRATION.—Hale, 1987b, fig. 15.

DISTRIBUTION.—South Africa (OF5, Cape Province), Lesotho, SWA/Namibia.

COMMENTS.—This is a member of the *X. schenkiana* group with psoromic acid as the main constituent. It occurs chiefly in eastern Cape Province with *X. diacida* (protocetraric and psoromic acids) and is less tightly adnate than *X. schenkiana* or *X. colorata*. A sample of 48 specimens tested with TLC gave these results: 27 contained psoromic and 2′-O-demethylpsoromic only; another 7 also had caperatic acid; and 2 had caperatic and stenosporonic acids. Nine specimens had the two main components and the schenkiana pigments and 3 with this composition also contained caperatic and stenosporonic acids. See *X. schenkiana* for further discussions.

Xanthoparmelia psoromifera

Xanthoparmelia psoromifera (Kurokawa) Hale, 1974:688.

Parmelia psoromifera Kurokawa, 1967:374. [Type collection: Jalisco, 25 km S of Guadalajara, Mexico, Wirth 22 (US, holotype).]

Xanthoparmelia psoromifera Kurokawa ex Hale, 1967:418.

DESCRIPTION.—Thallus adnate on rock, 3–8 cm broad, light yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate, crowded at the center; upper surface continuous, emaculate, shiny, rugose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia common, substipitate, 3–6 mm diameter; spores 4–5 × 10–12 μm.

CHEMISTRY.—Psoromic, 2′-O-demethylpsoromic, and usnic acids.

ILLUSTRATIONS.—Egan, 1975, fig. 4; Hale, 1967, fig. 6; Kurokawa, 1967, fig. 2.

DISTRIBUTION.—Western North America, South Africa (Cape Province).

COMMENTS.—This is the presumptive parent morph of isidiate *X. lavicola*. It is relatively common in arid southwestern USA and known from one locality in Namaqualand.
Xanthoparmelia pumila

Xanthoparmelia pumila (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:312.

Parmelia pumila Kurokawa and Filson, 1975:42. [Type collection: Eyre Highway, 40 km E of Kimba, S.A., Australia, Filson 11740 (MEL, holotype; TNS, isotype).]

DESCRIPTION.—Thallus adnate on hard lateritic soils, firm, 3–10 cm broad, light yellowish green; lobes sublinear, 1–2 mm wide, separate to contiguous and imbricate, becoming densely laciniate toward the center, the laciniae terete, apressed, 0.2–0.4 mm wide; upper surface continuous, emaculate, often dull whitish pruinose at the tips, isidia and soreidia lacking; medulla white; lower surface plane to weakly canalicate with a weakly developed rim, light brown at the tips but blackening at the center, moderately rhizinate, the rhizines dark brown to black, thin, simple, 0.3–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia rare, substipitate, 2–6 mm in diameter; spores 5 × 10–11 μm.

CHEMISTRY.—Salazinic (major), consalazinic, norstictic (trace), and usnic acids.

ILLUSTRATION.—Kurokawa and Filson, 1975, pl. 3: fig. 2.

DISTRIBUTION.—Australia (NSW, SA, WA).

COMMENTS.—This unique Australian lichen grows firmly attached to hard-surfaced lateritic soils in mallee scrub. Norstictic acid-containing *X. norpumila* is morphologically identical. There are no other species in the genus with this growth habit.

Xanthoparmelia punctulata

Xanthoparmelia punctulata (Gyelnik) Hale, 1988:405.

Parmelia punctulata Gyelnik, 1938c:85. [Type collection: Estancia, Prov. Córdoba, Argentina, Hoxus 102 (BP, lectotype).]

Xanthoparmelia argentinensis Nash, Elix, and Johnston, 1987:288. [Type collection: 3 km E of Cacheuta along route 7, Provincia de Mendoza, Argentina, Nash 23915 (ASU, holotype; ANUC, BAFC, BM, CTES, US, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 3–6 cm broad, dull yellowish green, darkening at the center; lobes subirregular, 1.5–4 mm broad, apiocally subtruncate, subimbricate; upper surface continuous, emaculate, shiny, irregularly cracked with age, moderately isidiate, the isidia subglobose (Figure 19a), 0.08–0.15 mm in diameter, to 0.2 mm high, the tips epicorticate, brownish, erumpent, easily abraded and forming a scurfy mass, unbranched; medulla white; lower surface plane, black except for a brown zone at the tips, moderately rhizinate, the rhizines black, coarse, simple, 0.5–1 mm long. Pycnidia lacking. Apothecia rare, substipitate, to 6 mm in diameter; spores 4–5 × 9–11 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Nash, Elix, and Johnston, 1987, fig. 2.

DISTRIBUTION.—Peru, Argentina.

COMMENTS.—This species is closely related to *X. cordillerana*, a more widespread Andean species with a brown lower surface. The lectotype is a mixture of isidiate *X. punctulata* and soreidia *X. ulcerosa*, but Gyelnik clearly mentioned isidia.

Xanthoparmelia pusilifera

Xanthoparmelia pusilifera Hale, Nash and Elix in Hale, 1986b:594. [Type collection: 1 km S of summit, Swartberg Pass, ca. 20 km NW of Kango Caves, Cape Province, South Africa, Grid 3322 AC, Hale NS, Filson 11205 (MEL, holotype; PRE, isotype) (type locality given in the original description was in error).]

DESCRIPTION.—Thallus tightly adnate on rock, fragile, 3–5 cm broad, dull yellowish green; lobes short and sublinear, dichotomously branched, 0.5–1.2 mm wide, contiguous to subimbricate, becoming sublobulate with age, the lobules apressed; upper surface continuous, emaculate, shiny, irregularly cracked with age, moderately isidiate, the isidia initially gbose, 0.1–0.3 mm in diameter and up to 0.3 mm high, the tips epicorticate, soon erupting into pustulate or coarsely subsorediate masses; medulla white; lower surface plane, brownish at the tips but black toward the center, moderately rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic (trace), and usnic acids and an unidentified fatty acid.

ILLUSTRATION.—Hale, 1986b, fig. 41.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The only closely related species, *X. mougeotii*, has distinctly capitate soralia and is more tightly adnate. The East African *X. glomerulata* has tall cylindrical isidia that become erumpent and subsorediate.

Xanthoparmelia pustulifera

Parmelia pustulifera Elix, 1981:367. [Type collection: Gudgenby River Gorge, 4.5 km S of Thwarra, A.C.T, Australia, Elix 6117 (MEL, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 2–5 cm broad, dull yellowish green; lobes sublinear, 0.8–1.5 mm wide, contiguous to subimbricate, black rimmed; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia subgbose and inflated to subspheroidal (Figure 19b), 0.1–0.2 mm in diameter, 0.1–0.2 mm high, the tips epicorticate, pale to brownish, bursting open apically and becoming coralloid-granulose, unbranched; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, substipitate, 1–3 mm in diameter; spores 4–6 × 6–9 μm.
CHEMISTRY.—Norstictic (major), connorstictic, hypostictic (trace), hyposalazinic (trace), constipatic (trace), and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 13.

DISTRIBUTION.—Australia (NSW, ACT, Tas, WA), New Zealand.

COMMENTS.—This rare, distinctive erumpent-isidiate lichen grows along moist rock surfaces.

Xanthoparmelia pustulosorediata

Figure 61f

Xanthoparmelia pustulosorediata Hale, 1989a:556. [Type collection: On crumbling sheltered granite in large kopnie, 5 km NE of Aus on hwy 35 (road to Helmeringshausen), 4.7 km N of Hwy B4, elevation 1300 m, South West Africa/Namibia, Grid 2616 CB, *Hale* 81134, 27 Apr 1988 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, brittle and breaking apart when collected, 5–8 cm broad, dull yellowish green; lobes subirregular, 1–3 mm wide, short and crowded; upper surface continuous to faintly white-maculate in part, shiny to dull white-pruinose, soon strongly rugose and developing coarsely sorediate, erupting pustules covering much of the thallus; medulla white; lower surface plane, pale brown or darkening, moderately rhizinate, the rhizines brown, simple, 0.2–0.8 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constrictic, and usnic acids, lusitana unknown.

ILLUSTRATION.—Hale, 1989a, fig. 29.

DISTRIBUTION.—SWA/Namibia, South Africa (Cape Province).

COMMENTS.—Dense pustulate-sorediate outgrowths characterize this unusual species, collected in extremely arid sites at the base of granite ledges where water accumulates during infrequent rains.

Xanthoparmelia putsoa

Figure 62a

Xanthoparmelia putsoa Hale, 1987b:328. [Type collection: On small ledges on grassy bald, Blue Mountain Pass, elev. 2634 m, Lesotho, Grid 2928 BA, *Hale* 78977, 4 Nov 1986 (US, holotype; ANUC, PRE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, rather leathery, 6–9 cm broad, light yellowish green but darkening somewhat with age; lobes subirregular, 1.3–2 mm wide, contiguous to overlapping and becoming coarsely laciniate at the center, the laciniae sublinear, 0.5–1 mm wide, appressed, black-rimmed; upper surface continuous, emaculate, shiny, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple 0.5–1 mm long. Pycnidia abundant; conidia bifusiform, 0.5 × 5–7 μm long. Apothecia poorly developed, subapothecial, ~1.5 mm in diameter; spores 5 × 7 μm, poorly developed.

CHEMISTRY.—Echinocarpic (major), gyrophoric (major), 5-O-methylhiascic (minor), echeinocarpic (minor), and usnic acids (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987b, fig. 16.

DISTRIBUTION.—Lesotho.

COMMENTS.—This is the first occurrence of echinocarpic acid in *Xanthoparmelia*. Morphologically the species is close to *X. gyrophorica* Hale, another high elevation species in Lesotho with a less congested thallus and gyrophoric acid only.

Xanthoparmelia quintaria

Figure 62b

Xanthoparmelia quintaria (Hale) Hale, 1974b:488.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, more or less pulvinate, breaking apart when collected, 2–8 cm broad, light yellowish green; lobes sublinear, 0.6–1 mm wide, contiguous to imbricate and congested; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown to dark brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia subapothecial, 1–2 mm in diameter; spores 4–5 × 7–9 μm.

CHEMISTRY.—Hypostictic, hyposalazinic, hypoconstrictic (trace), hypoprotocetraric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1971a, fig. 3C.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Closer examination of the type and additional collections shows that the lower surface is brown to dark brown but not black. This lichen has no close relatives except perhaps for *X. protoquintaria*, which is black below and tightly adnate. *Xanthoparmelia metastrigosa* from Australia is also loosely adnate but has broader lobes (1.5–4 mm wide). It is confined to granitic shoreline rocks within 100 m of the shoreline in the southwestern Cape area, from Camps Bay to Hottentots Huisse on Cape Peninsula.

Xanthoparmelia remanens

Figure 62c

Parmelia remanens Elix, 1981:368. [Type collection: 10 km E of Cooma, along Numeralla Road, NSW, Australia, *Elix* 1522 (MEL, holotype).]

DESCRIPTION.—Thallus adnate on rock, 5–7 cm broad, dull yellowish green; lobes subirregular, 1.5–2.5 mm wide,
contiguous to imbricate and crowded; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 19c), 0.08–0.12 mm in diameter, 0.2–0.5 mm high, the tips epicotriate, rarely somewhat crumpled, simple or becoming coralloid branched; medulla white; lower surface plane, brown to dark brown, moderately rhizinate, the rhizines brown, simple, rather coarse, 0.2–0.5 mm long. Pycnidia lacking. Apothecia not common, substipitate, 1–3 mm in diameter; spores 5–6 × 10–11 μm.

Chemistry.—Scabrosin 4,4′-diacetyl, scabrosin 4-acetyl-4′-butyrate, scabrosin 4,4′-dibutyrate, scabrosin 4-acetyl-4′-hexanoate, and usnic acid.

ILLUSTRATION.—Elix, 1981, fig. 14.

Distribution.—Australia (Qld, NSW, Tas, SA, NT, WA).

Comments.—A rare but widespread species, *X. *remanes resembles *X. scabrosa*, which has more distinctly crumpled isidia and produces norlobaridone and loxodin, with or without the scabrosin derivatives, as the main component. Another very closely related species in Australia, *X. nonreagens*, has smaller, nonerumpent isidia.

Xanthoparmelia repans

Figure 62d

Xanthoparmelia repans (Kurokawa) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:316.

Parmelia repans Kurokawa in Baker et al., 1973:137. [Type collection: 6 mi W of Red Cliffs, Vict., Australia, Kurokawa 6621 (TNS, holotype).]

Description.—Thallus loosely adnate to free growing on soil, firm, 1–4 cm broad, light yellowish green; lobes sublinear, 0.8–1.5 mm wide, elongate, dichotomously branched, separate to imbricate, the ultimate lobes sometimes becoming subterete at the center; upper surface white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface canaliculate with a yellow rim, pale brown or darker, moderately to densely rhizinate, the rhizines simple to furcate, dark brown to black, 1–2 mm long. Pycnidia lacking. Apothecia rare, substipitate, 1–1.5 mm in diameter; spores 4–5 × 6–7 μm.

Chemistry.—Fumarprotocetraric, succinprotocetraric (±), protocetraric (±trace), physodic (±trace), and usnic acids.

Illustration.—Baker et al., 1973, fig. 1; Filson and Rogers, 1979, fig. 23A.

Distribution.—Australia (Qld, NSW, ACT, Vic, SA, WA), New Zealand.

Comments.—This tericolous lichen is related to *X. amphicantha*, which contains stictic acid. It is very common in semi-arid shrublands in Australasia.

Xanthoparmelia rogersii

Xanthoparmelia rogersii Elix and Johnston in Elix, Johnston, and Armstrong, 1986:317. [Type collection: Girraween National Park, Qld., Australia, Rogers 2871 (MEL, holotype).]

Parmelia rogersii (Elix and Johnston) Brusse, 1988:539.

Description.—Thallus loosely adnate, 4–8 cm broad, light yellow green; lobes sublinear, 2–4 mm wide, separate to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, simple, 0.5–1.2 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5 μm. Apothecia common, substipitate, 3–10 mm in diameter; spores 5–6 × 8–9 μm.

Chemistry.—Fumarprotocetraric, succinprotocetraric, protocetraric (±trace), and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 32.

Distribution.—Australia (Qld), Kenya.

Comments.—This appears to be a rare chemotype of *X. tasmanica*, differing morphologically in the lack of secondary laciniae.

Xanthoparmelia rubrireagens

Figure 62e

Xanthoparmelia rubrireagens (Gyelnik) Hale, 1974b:488.

Parmelia rubrireagens Gyelnik, 1938a:288. [Type collection: Goulburn, Rocky Hill, NSW, Australia, Watts 90 (BP, lectotype).]

Description.—Thallus loosely adnate on rock, 5–8 cm broad, light yellowish green; lobes sublinear to linear, 0.4–1 mm wide, elongate, dichotomously branched and irregularly and weakly constricted, separate to imbricate; upper surface mostly continuous with a few patches of weak white maculce, isidia and soredia lacking; medulla white; lower surface plane, black, becoming transversely rugose, sparsely rhizinate with extensive bare areas and small clumps of rhizines at the tips or center, the rhizines black, rather long, simple to furcate, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 4–5 μm. Apothecia often developed, substipitate, 2–6 mm in diameter; spores 5–6 × 7–9 μm.

Chemistry.—Salazinic, consalazinic, norstictic (±trace), and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986, fig. 16 (as *X. eradicata*).

Distribution.—Australia (NSW, ACT).

Comments.—This conspicuous species is rather common in cooler upland NSW. It is related to *X. constrictans*, a South African vicariad with greater development of rhizines, a smooth lower surface, and strongly constricted, white-maculate lobes.

Xanthoparmelia rubromedulla

Figure 62f

Xanthoparmelia rubromedulla Hale, 1986b:594. [Type collection: Waaihoek Peak, elev. 1680 m, Worcester Division, Cape Province, South Africa, Grid
Xanthoparmelia rubropustulata

FIGURE 63a

Xanthoparmelia rubropustulata Hale, 1987a:264. [Type collection: W side of hwy R43, 17.4 km N of N2, elev. 500 m, Cape Province, South Africa, Grid 3419 CA, Hale 78194, 26 Oct 1986 (US, holotype; LD, PRE, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, fragile, 4–7 cm broad, dull yellowish green; lobes subirregular, 1–1.5 mm wide, contiguous and becoming crowded at the center, upper surface continuous, emaculate, shiny, rugose with age, moderately isidioid, the isidia globose-pustulate, bullate, 0.1–0.5 mm in diameter, fragile, the tips eprickoid, breaking open at maturity, erumpent, unbranched, medulla uniformly deep wine red; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic and usnic acids, two "endomitoides" anthraquinone pigments.

ILLUSTRATION.—Hale, 1987a, fig. 20.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The coarse, globose isidia growths separate this rare species from *X. endomitoides*, its closest relative.

Xanthoparmelia rugulosa

FIGURE 63b

Xanthoparmelia rugulosa Hale, 1987b:328. [Type collection: On sandstone talus boulders on a hillside pasture, 17.6 km NE of the town of Barkly Pass on the W side of hwy R393, Cape Province, S. Africa, Grid 3127 BB, Hale 76998, 10 Oct 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, fragile, 3–5 cm broad, yellowish green; lobes subirregular, 1–1.5 mm wide, short, contiguous to imbricate and crowded at the center; upper surface continuous, emaculate, shiny, rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, delicate, simple, 0.2–0.6 mm long. Pycnidia common; conidia cylindrical to weakly bifusiform, 0.5 × 6–8 µm. Apothecia rather rare, adnate, 0.5–1 mm in diameter; spores 5–6 × 7–9 µm.

CHEMISTRY.—Diffusoria (major), 4-O-demethyldifussoria (±trace), 3-α-hydroxyarbutin (±trace), 4-O-demethylarbutin (±trace), squamatic (±trace), baemycysic (±trace), and usnic acids, atranorin (trace) (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987b, fig. 17.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The only other comparable species with diffusoria acid is *X. tuscsonensis* from the western US and Australia, a much larger lichen with lobes 1–3 mm wide. *Xanthoparmelia rugulosa* has been collected only once on Cave sandstone in a moist area of eastern Cape Province.

Xanthoparmelia rupestris

Xanthoparmelia rupestris Elix and Johnston in Elix, Johnston, and Armstrong, 1986:319. [Type collection: 12 km E of Michelago, Tinderry Mountains, NSW, Australia, Nash 20455 (ASU, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, more or less pulvinate, 4–10 cm broad, yellowish green; lobes subirregular, 1–3 mm wide, elongate and dichotomously branched, separate to loosely imbricate, black rimmed; upper surface continuous to very weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to weakly convoluted, dark brown to black or mottled brown and black, very sparsely rhizinate, the rhizines black, coarse, simple, 0.5–1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Scabrosin 4,4'-dibutyrate, scabrosin 4-acetate-4'-hexanoate, scabrosin 4-acetate-4'-butyrate, scabrosin 4,4'-diacetate (trace), and usnic acid.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 33.

DISTRIBUTION.—Australia (NSW).

COMMENTS.—This very rare species is related to *X. dichotoma* (norlofaridine present), a widespread Australian species.

Xanthoparmelia salamphixantha

FIGURE 63c

Xanthoparmelia salamphixantha Hale, 1989a:558. [Type collection: On sterile soil in karoo pasture, on Hwy R364, 29 km S of junction with Hwy R27, ...]

FIGURE 63.—Species of *Xanthoparmelia*: a, *X. rubropustulata* (Hale 78194, holotype in US); b, *X. rugulosa* (Hale 76998, holotype in US); c, *X. salamphixantha* (Hale 79962, holotype in US); d, *X. satelliptens* (Hale 79905, holotype in US); e, *X. xalikobenak* (Sanitess 21163, holotype in UPS); f, *X. saniensis* (Hale 74031, holotype in US). Scale in mm.
Xanthoparmelia saleruptens

Figure 63d

Xanthoparmelia saleruptens Hale, 1989a:558. [Type collection: On large overhanging Table Mountain sandstone ledges, 7 km W of Olievenboskraal on road to Paleisheuwel (west of Hwy NT), elev. 900 m, Cape Province, South Africa, Grid 3218 BD, Hale 79905, 25 Mar 1988 (US, holotype; PRE, isotype).]

Description.—Thallus loosely adnate to nearly free growing on soil and mosses, easily breaking apart, 4–8 cm broad, light yellowish green; lobes subirregular, 0.8–1.5 mm wide, dichotomously branched; more or less separate; upper surface uniformly white-maculate, shiny, rugose and irregularly cracked with age, isidia and soredia lacking; medulla white; lower surface weakly canaliculate, with a raised yellow rim, pale brown or darkening and in part jet black, shiny, sparsely rhizinate, the rhizines dark brown, simple, 0.5–2 mm long. Pycnidia common; conidia 0.5 × 4–6 μm long. Apothecia subistipitate, 3–5 mm in diameter; spores 5–6 × 9–10 μm.

Chemistry.—Salazinic (major), consalazinic, norstictic (trace), and usnic acids, chalybaeizans unknown.

Illustration.—Hale, 1989a, fig. 30.

Distribution.—South Africa (Cape Province).

Comments.—While similar to *X. sublabella*ata, *X. salamphixantha* has broader lobes with a heavily white-maculate surface. It has been found in two localities on sterile soil in karoo-dominated pastures in southwestern Cape Province.

Xanthoparmelia saniensis

Figure 63f

Xanthoparmelia saniensis Hale, 1986b:596. [Type collection: Sani Pass east of Customs Gate, elev. 2875 m, Lesotho, Grid 2929 CB, Hale 74031, 19 Feb 1986 (US, holotype; LD, PRE, isotype).]

Description.—Thallus tightly adnate on rock, fragile, 1–3 cm broad, light yellowish green; lobes subirregular, 0.8–1.5 mm wide, contiguous to subimbriicate; upper surface continuous, emaculate, dull white pruinose, sparsely pustulate-isidia, the isidia irregularly developed from ridges, ~0.3 mm in diameter, the tips weakly epicorticate, pale, erupting and forming subcordate masses, unbranched; medulla white; lower surface plane, pale brown, sparsely rhizinate, the rhizines pale brown, simple, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

Chemistry.—Salazinic (major), consalazinic, and usnic acids, chalybaeizans unknown.

Illustration.—Hale, 1989a, fig. 31.

Distribution.—South Africa (Cape Province).

Comments.—This rare species belongs in the *X. eruptions* group. In common with other species in this group it grows on the underside of large overhanging sandstone ledges in areas of winter fog.

Xanthoparmelia calidum

Xanthoparmelia calidum Hale, 1989a:558. [Type collection: Near Johnsell Point, Shira Plateau, Mt. Kilimanjaro, Tanzania, elev. 3950 m, Santesson 21163, 13 Jan 1970 (UPS, holotype; US, isotype).]

Description.—Thallus loosely adnate on rock or mosses over rocks, pulvinate, rather brittle, 4–8 cm broad, dark yellowish green; lobes subirregular, 0.8–2 mm wide, dichotomously branched, black rimmed, imbricate, irregularly laciniate with age; upper surface continuous, emaculate, shiny, rugulose and transversely cracked with age, soredia and isidia lacking; medulla white; lower surface plane, black, shiny, smooth to slightly rugulose, sparsely to moderately rhizinate, the rhizines black, rather coarse and unbranched, 0.3–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 4–5 μm. Apothecia rare, subistipitate, 3–5 mm wide, the rim inrolled; spores 5–6 × 9–10 μm.

Chemistry.—Salazinic (major), consalazinic, norstictic (trace), protocetraric (trace), and usnic acids.

Illustration.—Hale, 1989a, fig. 32.

Distribution.—Kenya, Tanzania.

Comments.—This high-elevation lichen with black-rimmed lobes is common at an elevation of 3600–4000 m in Kenya and Tanzania. It differs from *X. kiboensis* in the pulvinate growth habit, shiny lower surface, and chemistry (norstictic acid in *X. kiboensis*).
Xanthoparmelia scabrosa

Description. Thallus adnate to loosely adnate on rock, 4–12 cm broad, yellowish green; lobes subirregular to sublinear, 1.5–4 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia variable, warty and subglobose to cylindrical or irregularly inflated (Figure 19e), 0.08–0.12 mm in diameter, 0.1–0.4 mm high, the tips eporate, erumpent and becoming postulate-sorediate with age, mostly unbranched; medulla white; lower surface plane, brown to dark brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia rare; conidia biform, 0.5 × 6–8 μm. Apothecia rare, substipitate, 2–8 mm in diameter; spores 5–6 × 10–12 μm.

Chemistry. Norlorbaridone (major), loxodin, scabrocin 4,4′-dianeate (±), scabrocin 4-acetate-4′-butyrate (±), scabrocin 4,4′-dibutyrate (±), scabrocin 4-acetate-4′-hexanoate, isonorlobaridone (±), norlobaridone (±), norlobaridone methyl ester (±), conodoxin (±), cononorlobaridone (±), and usnic acid.

Illustrations. Elix, 1981, fig. 15 (as Parmelia scabro-pustulata); Filson and Rogers, 1979, pl. 12d; Galloway, 1980, fig. 10.

Distribution. Argentina, Japan, Australia (Qld, NSW, ACT, Vic, Tas, SA, NT, WA), New Zealand, New Guinea.

Comments. This is one of the more widespread species in eastern Asia and Australasia. It is especially common in New Zealand where it even grows on pavement and sidewalks in cities. The lower surface is usually darkish brown. Related species are X. amplexula with cylindrical isidia, X. verdonii with a black lower surface, and X. constipata, a primarily terricolous species.

Müller Argoviensis (1888c), following his extremely conservative treatment of foliace lichens, actually created a new form level name for *P. scabrosa*: *P. conspersa* var. *hypoctyloides* f. *isidiosa*.

Xanthoparmelia schenckiana

Description. Thallus adnate on rock, leathery, 4–12 cm broad but coalescing to cover large areas, bright yellowish green; lobes subirregular, 2–5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, dull and becoming white-pruinose at the tips, rugose with age, isidia and soredia lacking; upper medulla white, lower medulla usually dull pale rusty orange in part; lower surface plane, shiny, black, sparsely rhizinate, the rhizines black coarse, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia common, substipitate, 2–5 mm in diameter; spores 6 × 10–11 μm.

Chemistry. Protocetraric, caperatic (±), and usnic acids, schenckiana pigments (±) and secalonic acid derivatives (±).

Distribution. Lesotho, South Africa (Capet Province).

Comments. *X. schenckiana* was the first described species in a group of conspicuous, bright yellow South African lichens. All of them are rather leathery, broad lobed with round tips yet surprisingly tightly adnate for a lichen this size, jet black and dull below with sparse coarse rhizines, and without isidia or soredia. They also frequently produce a dull rusty reddish anthraquinone pigment in the lower medulla, which I am calling the schenckiana pigment.

This pigment fluoresces bright yellow (higher spot at about Rf 5) under long-wave UV and forms a diffuse streak below this on TLC plates. The streak includes the secolonic acid derivatives.

A sample of 45 specimens of *X. schenckiana* was examined: 27 contained protocetraric acid and the pigment; 5 had protocetraric and caperatic acids with the pigment; and 13 lacked the pigment, containing only protocetraric acid with (7) or without (6) caperatic acid.

Xanthoparmelia schenckiana and *X. colorata* with norstictic-salazinic acids are widespread from eastern Cape Province through the Little and Great Karoo, reaching a peak of abundance in Namaqualand. Both are densely white-pruinose. Although these two chemotypes are sympatric, they usually occur at different localities.

Other species in the group, *X. diacida* (protocetraric and psoromic acids) and *X. psoromic* (psoromic acid), occur most frequently in the Cape sandstone region of eastern Cape Province and are much rarer outside this relatively moist region. They are only weakly, if at all, white pruinose. A rare
fifth species, *X. psornorsticitica* (psoromic and norstictic acids), occurs in extremely arid upper Namaqualand. A final species that seems to belong in this group, *X. norcolorata*, contains norstictic acid as the major metabolite but lacks pigments. It occurs far to the north of the other species in Namibia.

Xanthoparmelia schmidtii

Figure 64c

Xanthoparmelia schmidtii Hale, 1984:78. [Type collection: Road to Visalia on M-296, Tulare Co., California, USA, *Hale 57087* (US, holotype; DUKE, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 4–8 cm broad, dark yellowish green; lobes subirregular, 1.8–5 mm wide, more or less round, contiguous to imbricate; upper surface continuous, emaculate, shiny, densely isidiate, the isidia cylindrical to irregularly inflated (Figure 19), 0.1–0.2 mm in diameter, 0.1–0.6 mm high, the tips syncorticate, darkening, densely branched with age; medulla white; lower surface plane, pale or darker brown, moderately rhizinate, the rhizines pale or darker brown, simple, 0.3–0.6 mm long. Pycnidia lacking. Apothecia common, stipitate, 2–3 mm in diameter; spores 4–6 × 7–9 µm.

CHEMISTRY.—Norstictic (major), salazinic (major), con-
salazinic, connorstictic, and usnic acids.

ILLUSTRATION.—Hale and Johnston, 1988b, fig. 9.

DISTRIBUTION.—Australia (NSW, Vic).

COMMENTS.—Although close to norstictic acid-containing *X. streimannii*, this rare species has co-occurrence of salazinic acid.

Xanthoparmelia serusiauxii

Figure 64e

Xanthoparmelia serusiauxii Hale, 1986b:596. [Type collection: Laguneberg Mountains, NE of Mile 72, Distr. Omaruru, South West Africa/Namibia, Grid 2114 CC, *Hale 75102* (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, rather soft, 4–10 cm broad, dark yellowish green and blackening at the center; lobes sublinear, 1–2 mm wide, little branched, convex and appearing inflated, black-rimmed, contiguous, short laciniate at the center with age; upper surface continuous, emaculate or the tips faintly reticulate white-maculate, shiny or becoming dull white pruinose, heavily rugose with age, isidia and soredia lacking; medulla white; lower surface plane, black, dull, sparsely rhizinate, the rhizines black, coarse, simple, 0.3–0.5 mm long. Pycnidia common; conidia not found. Apothecia lacking.

CHEMISTRY.—Lecanoric and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 44.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This very common *Xanthoparmelia* grows on dolerite boulders and small flat pebbles in desert pavement in the central coastal Namib area. It is the last surviving *Xanthoparmelia* species 40–45 km inland at the edge of the ocean fog zone. It is easily recognized by the soft, seemingly inflated thallus and dense pruin. Closely related species in the Namib desert are *X. equalis* (evernic acid) and *X. lagunebergensis* (proteocetraric acid), both of which have a pale lower surface.

Xanthoparmelia shebaensis

Figure 64f

DESCRIPTION.—Thallus very tightly adnate on rock, 2–4 cm broad, yellowish green; lobes sublinear, 0.3–0.7 mm wide, short and apically blunt, dichotomously branched, contiguous to imbricate, black-rimmed; upper surface continuous to reticulate white-maculate at the tips, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.
Chemistry.—Stenoporonic (major), colensoic, norcolensoic, and usnic acids with several unknown substances.

Illustration.—Nash and Elix, 1987, fig. 6.

Distribution.—South Africa (Transvaal).

Comments.—The thin reticulate maculation resembles that of *X. peruviensis*, another species with stenoporonic acid. Chemically similar *X. stenosporica* from the Swartberg Mountains of Cape Province, South Africa, has a continuous surface. South African *X. colensoica* is part of the same chemosyndrome but contains colensoic as the major component.

Xanthoparmelia sigillata, new combination

Parmelia sigillata Brusse, 1988:537. [Type collection: 9 km N of De Rust, Meiringspoort, Cape Province, South Africa, Grid 3322 BC, *Brusse* 4827 (PRE, holotype; not seen); BM, isotype.)

Description.—Thallus tightly adnate to adnate on rock, centrally areolate, 2–4 cm broad, light yellowish green; lobes sublinear, 1–2 mm wide, dichotomously branched, contiguous to subimbricate; upper surface continuous, shiny, transversely cracked with age, soredia and isidia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines light brown, simple. Pycnidia numerous; conidia 0.05 × 5–6 µm. Apothecia well developed, adnate, 1–2.5 mm in diameter; spores 5–6 × 8–11 µm.

Chemistry.—Evernica (major), lecanoric, and usnic acids.

Distribution.—South Africa (Cape Province).

Illustration.—Brusse, 1988, fig. 7.

Comments.—Externally this rare karoo species is close to *X. worcesteri*, which contains lecanoric acid as the chief component and is emaculate.

Xanthoparmelia simulans

![Figure 65a](image-url)

Description.—Thallus loosely adnate on soil or over mosses on soil, subpulvinate, 5–8 cm broad, bright yellowish green, darkening with age; lobes sublinear, 0.5–1 mm wide, divaricately branched and irregularly constricted, black rimmed, subascending; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, rather coarse, simple, 0.5–1 mm long. Pycnidia and apothecia lacking.

Chemistry.—Stictic (major), constrictic, cryptostictic, norstrictic (trace), and usnic acids.

Illustration.—Hale, 1986b, fig. 45.

Distribution.—South Africa (Cape Province).

Comments.—This species differs from closely related *X. constrictians* in the presence of the stictic acid complex (in place of salazinic acid) and by the emaculate upper surface. It is confined to higher exposed elevations in southeastern Cape Province. *Xanthoparmelia suberadicata* from Madagascar shares the production of stictic acid but lacks rhizines and has uniformly linear lobes with a strongly rugose lower surface.

Xanthoparmelia skyrinifera

![Figure 65b](image-url)

Xanthoparmelia skyrinifera Hale, 1986b:597. [Type collection: 15.9 km NE of Barrydale along Hwy R62, elev. ca. 500 m, Cape Province, South Africa, Grid 3321 DD, *Hale* 74040, 2 Feb 1986 (US, holotype; PRE, isotype.).]

Description.—Thallus loosely adnate on rocks to nearly free growing on soil, firm, 6–12 cm broad, bright yellowish green; lobes sublinear, 1.5–2.5 mm wide, more or less imbricate; upper surface faintly to distinctly white-maculate, rugose and transversely cracked with age, isidia and soredia lacking; lower medulla white, lower medulla ochre in part; lower surface plane, pale brown with an ochre tinge but turning darker brown toward the center, sparsely to moderately rhizinate, the rhizines pale brown, 0.5–1.5 mm long, simple to furcate and apically splayed. Pycnidia common; conidia bifusiform, 0.5 × 5–6 µm. Apothecia lacking.

Chemistry.—Protocetraric and usnic acids, skyrin.

Illustration.—Hale, 1986b, fig. 46.

Distribution.—South Africa (Cape Province).

Comments.—This lichen is characterized by the loosely adnate habit the pale brown, moderately rhizinate, pigmented lower surface. It is especially common on Bokkeveld shale outcrops in the Little Karoo. Another species with protocetraric acid and skyrin, *X. subcolorata*, has a rugose, eroding lower surface and sparse rhizines.

Xanthoparmelia somloensis

![Figure 65c](image-url)

Parmelia somloensis Gyelnik, 1931a:156. [Type collection: Comit. Veszprém, Mt. Somló, near Doba, Hungary, Gyelnik s.n. (BP, lectotype.).]

Parmelia conspersa s. stenophylla Achauer, 1803:206. [Type collection: Sweden, s.c. (H-Ach, lectotype; BM-Ach, isotype.).]

*Parmelia conspersa g. georgirui Acharius, 1810:487. [Type collection: [Tiflis], Georgia, USSR, Sept. s.n. (H-Ach, lectotype; UPS, isotype.).]

Parmelia conspersa a laterior Schaerer, 1840:473. [Type collection: [Valle Entremont, supra Lydass], s.c. (G, lectotype.).]

Parmelia conspersa c aborivis Schaerer, 1850:46. [Type collection: Europe, s.c. (G, lectotype.).]

Parmelia conspersa var. imbricata Massalongo, 1856:167. [Type collection: Italy, Massalongo, Lichenes Exsiccatis Italici 313 (UPS, lectotype; BM, FH-Tuck, G, H-Nyl. herb. no. 34759, L, LD, M, S, VER, WU, ZT, isoleotypes.).]

Parmelia conspersa f. convoluta Rabenhorst, 1871:891. [Type collection: Between Grimma and Hohenstadt, Saxonia, Germany, Etich s.n., no. 891]
in Rabenhorst, Lichenes Europaei (II, lectotype; B, UPS, ZT, islectotypes). Nomen nudum without a description.

Parmelia mollisscula f. stenophylla (Acharius) B. Stein, 1889:155.

Parmelia conspersa var. imitans Müller Argoviensis, 1891:378. [Type collection: Nila Valley, [Thiri-Garhwal], North-Western India, Dutie s.n. (BM, lectotype; G, islectotype).]

Parmelia conspersa ssp. moliisscula var. stenophylla (Acharius) Hellenkin, 1901a:20.

Parmelia conspersa f. taeniata Anders, 1906-62. [Type collection: Mickenhan, North Bohemia, Anders s.n., [12 Mar 1922 (PRM, lectotype).]

Parmelia conspersa f. imbricata (Massalongo) Mereschkowsky, 1920a:488.

Parmelia saxatilis var. subomphalodes BabaBruckner, 1930:190. [Type collection: Hwangleou-schan, Shenhs, China, Giralde [241] (W, lectotype).]

Parmelia conspersa f. viridulo-unbrina Gyelnik, 1930b:31. [Type collection: Baltimore, Maryland, USA, Pliit s.n. (BP, lectotype).]

Parmelia convoluta (Rabenhorst) Gyelnik, 1931a:156. [Not P. convoluta Kremplhuber, 1881:337 (= Xanthoparmelia convoluta (Kremplhuber) Hal.).]

Parmelia viridulo-unbrina (Gyelnik) Gyelnik, 1931b:286.

Parmelia intermedius Gyelnik, 1931a:156. [Nomen nudum but a specimen in H (Nylandia, Helsinki, Finland, s.c.) identified by Gyelnik is typical X. somoensis.]

Parmelia somoensis var. laciniulifera Gyelnik, 1931b:283. [Type collection: Ostrovi, Macedonia, Lille 1279 (BP, lectotype; designated type in Bouy de Lesdain herbarium destroyed).]

Parmelia convoluta var. subdensa Gyelnik, 1931b:285. [Type collection: Caucasia, Loja 404 (BP, lectotype).]

Parmelia pseudohungarica var. komatouensis Gyelnik, 1932a:217. [Type collection: Komotau, Czechoslovakia, Klement s.n. (BP, lectotype).]

Parmelia pulvinarius var. balatonica Gyelnik, 1932a:211. [Type collection: Near Badasontomaj, Mt. Kisou, Hungary, Boros s.n. (BP, lectotype).]

Parmelia pulvinarius f. dentaticola Gyelnik, 1932a:211. [Type collection: Salgir Valley, near Simpheropolin, Tauria Peninsula, Merechszkovich, Lichenes Rossiae Excisciti 55 (BP, lectotype).]

Parmelia viridulo-unbrina var. unbrina Gyelnik, 1932a:211. [Superfluous name for P. conspersa f. viridulo-unbrina Gyelnik.]

Parmelia hypopollida Gyelnik, 1932a:217. [Type collection: Komotau, Bohemia, Czechoslovakia, Klement s.n. (BP, lectotype).]

Parmelia viridulo-unbrina var. somoensis (Gyelnik) Gyelnik, 1932a:211.

Parmelia hypopollida Gyelnik in Servit and Klement, 1933:29. [Type collection: Weschitz, Czechoslovakia, Klement s.n.]

Parmelia iounis-sinave var. hypopollida (Gyelnik) Gyelnik, 1934a:306.

Parmelia lata f. balatonica (Gyelnik) Gyelnik, 1934b:372. [Mentioned in a key without citing basionym.]

Parmelia imitans var. imbricatoideas Gyelnik, 1934c:156. [Type collection: Rio Frio, Mexico, Amable 720 (BP, lectotype).]

Parmelia polyphylloides f. lacinulifera (Gyelnik) Gyelnik, 1934c:162. [Nomen nudum with no description.]

Parmelia imitans var. hypopollida (Gyelnik) Gyelnik, 1934c:155. [Basionym given as "Parmelia hypopollida Gyelnik in sched.," a species validly published in 1932.]

Parmelia lata f. borealis Gyelnik, 1934c:159. [Type collection: Klippingsberg, Torsö, Sweden, Vrang 205 (BP, lectotype).]

Parmelia lata var. rosettaformis Gyelnik, 1934c:158. [Type collection: Örkeny, Comis. Pest, Hungary, Tmok 2165/2 (BP, lectotype).]

Parmelia polyphylloides var. somoensisi (Gyelnik) Gyelnik, 1934c:162. [Basionym given as "Parmelia viridulo-unbrina var. somoensisi Gyelnik in sched." but P. somoensisi Gyelnik had already been published in 1931.]

Parmelia subpolyphylloides Gyelnik, 1934c:165. [Type collection: Insula Risiikeri [Rishiri, Hokkaido], Japan, Farfie 1373 (BP, lectotype).]

Parmelia imitans f. hypopollida (Gyelnik) Gyelnik, 1935:25.

Parmelia conspersa f. balatonica (Gyelnik) Gyelnik, 1936:123.

Parmelia conspersa f. borealis (Gyelnik) Gyelnik, 1936:123.

Parmelia conspersa f. dentaticola (Gyelnik) Gyelnik, 1936:123.

Parmelia conspersa var. rossetaformis (Gyelnik) Gyelnik, 1936:123.

Parmelia taractica var. komatouensis (Gyelnik) Gyelnik, 1936:128.

Parmelia conspersa var. stenophylla f. imbricata (Massalongo) Hillmann, 1936:175.

Parmelia imitans f. arenicola (Gyelnik, 1938a:278. [Type collection: Canet Plage, Perpignan, France, Moeas s.n. (BP, lectotype).]

Parmelia imitans f. verrucosa Gyelnik, 1938a:280. [Type collection: Roquebaute, Hérault, France, Augustin 29 (BP, lectotype).]

Parmelia phaeophana f. verrucosa (Gyelnik) Gyelnik, 1938b:35.

Parmelia phaeophana f. arenicola (Gyelnik) Gyelnik, 1938b:35.

Parmelia phaeophana f. imbricaticoides (Gyelnik) Gyelnik, 1938b:35.

Parmelia phaeophana f. imitans (Müller Argoviensis) Gyelnik, 1938b:35.

Parmelia stenophylla f. corticola Koskinen, 1955:80. [Type collection: Nomen nudum with no type designated; specimens identified by Koskinen in H include X. somoensis and X. conspersa.]

DESCRIPTION.—Thallus loosely adnate on rock, rather firm, 6–20 cm broad, light yellowish green; lobes sublinear, 1.2–4 mm wide, usually elongate and dichotomously branched, separate to divaricately imbricated; upper surface weakly to distinctly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pyrenia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 3–15 mm in diameter; spores 4–5 × 8–9 μm.

CHEMISTRY.—Salazinic, consalazinic, lobaric (±), and usnic acids.

ILLUSTRATIONS.—Anders, 1928, tab. 22, fig. 2 (as Parmelia conspersa f. taeniata); Jahns, 1980, fig. 412; Kroeg, Osthagen, and Tonsberg, 1980:213.

DISTRIBUTION.—Canada, USA, Mexico, Finland, Sweden, Great Britain, Germany, Austria, Switzerland, France, Spain, Czechoslovakia, Hungary, Roumania, Italy, Greece, Turkey, USSR, Japan, China, Mongolia, Korea, India, Pakistan.

COMMENTS.—The nomenclature of this widely distributed species has been confused for many years. I do not consider Heugel's reference (Heugel, 1855) to "Parmelia stenophylla" as validating the epithet stenophylla at the species rank, since he obviously did not intend to make a new combination (ICBN, Article 34.3 (Voss, 1983).

The first to make the combination at species level was in fact Du Rietz (1921), but this epithet had been used previously.
for a species, Parmelia stenophylla Müller Argoviensis, now recognized in Bulbothrix (Hale, 1976b). A few authors (Szatala, 1929b; Magnusson and Zahlbruckner, 1944; Tavares, 1945; Lettau, 1957) continued to use Heugel as the combining author as late as 1957, but this does not constitute valid publication. While stenophylla would have been available in Xanthoparmelia, I in effect blocked this possibility in 1987 (Ahti et al., 1987) by recombining in Xanthoparmelia the next available epithet in Parmelia, P. somloensis.

Xanthoparmelia somloensis, a common species on more exposed boulders in Eurasia and eastern North America, is recognized by the loose adnation, generally elongate "stenophyllid" lobes (as noted by Heugel in 1855!), more or less distinct maculation on the upper surface, and pale brown lower surface. The only other salazinic acid-containing species with this combination of characters are terete-laciniate X. durietzii in China; terrolicous, revolute-lobed X. pseudohungarica; and also in Europe X. subdiffluens, a terrolicous flat-lobed species.

Krog (1978) first reported lobaric acid as an accessory substance; 80% of the Norwegian specimens tested had lobaric acid with lesser frequency on mainland Europe and very few in North America. Only one chemotype, X. protomitrae with fumarprotocetraric acid (Krog, 1978), is known.

Xanthoparmelia spargenosa

Xanthoparmelia spargenosa (Elix and Johnston in Elix, Johnston, and Armstrong, 1986:322. [Type collection: Road to Crown Nest Falls, south of Kingaroy, Qld., Australia, Hale 65004 (US, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, firm, 4-10 cm broad, light yellowish green; lobes sublinear, 2-3 mm wide, contiguous to imbricate, sublaciniate and crowded at the center, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines, pale brown, simple, 0.2-0.5 mm long. Pycnidia common; conidia bisporeform, 0.5 x 5-7 µm. Apothecia common, stipitate, 2-6 mm in diameter; spores 5-6 x 8-9 µm.

CHEMISTRY.—Exuvic acid A (±), exuvic acid B, and usnic acid.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 34.

DISTRIBUTION.—Australia (Qld, NSW, SA), New Zealand.

COMMENTS.—This species is very close to isidiate X. exuvia, which is more closely adnate. The structures of exuvic acid A and B have not yet been determined.

Xanthoparmelia spargens

DESCRIPTION.—Thallus adnate on rock, 5-8 cm broad, yellowish green; lobes subirregular to sublinear, 1-2 mm wide, rather short, imbricate and rather crowded; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia subglobose to subcylindrical (Figure 19g), 0.08-0.15 mm in diameter, to 1 mm high, the tips epicorticate, pale, in part erumpent, coralloid branched with age; medulla white; lower surface plane, uniformly pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.5-1 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 x 5-7 µm. Apothecia rare, adnate, 2-3 mm in diameter; spores 5-6 x 8-11 µm.

CHEMISTRY.—Two undetermined fatty acids near protolichesterinic acid, usnic acid.

ILLUSTRATION.—Brusse, 1984, fig. 8.

DISTRIBUTION.—South Africa (Transvaal, Transkri, Natal, Cape Province, Ciskei), Swaziland.

COMMENTS.—This is one of the most common isidiate Xanthoparmeliae in the moist eastern foothills of the Drakensbergs. While X. verrucigera is externally similar, it contains stictic acid and has a black lower surface and nonerumpent, cylindrical isidia.

Xanthoparmelia springbokensis

Figure 65d

Xanthoparmelia springbokensis Hale, 1989a:559. [Type collection: Sloping granite domes in karoo, 1 km E of springbok, N side of Hwy R64, elev. 1100 m, Cape Province, South Africa, Grid 2917 DB, Hale 72249, 27 Jan 1986 (US, holotype; PRE, isotype)].

DESCRIPTION.—Thallus adnate on rock, rather brittle, 5-8 cm broad, dull olive green; lobes subirregular, 1.5-3 mm wide, short and irregularly branched, more or less suberect at the tips, imbricate; upper surface continuous to distinctly white-maculate, shiny, transversely cracked and strongly wrinkled-rugose with age; upper medulla white, rarely pale yellow, the lower part ochraceous in patches; lower surface plane, pale brown but often darkening at the tips, moderately rhizinate, the rhizines pale brown, 0.3-0.5 mm long, unbranched. Pycnidia common; conidia bisporeform, 0.5 x 5-6 µm. Apothecia well developed, stipitate, 2-5 mm in diameter; spores poorly developed, 5 x 9 µm.

CHEMISTRY.—Salazinic (major), consalazinic, norstetic (minor), protocetraric (trace), and usnic acids, chalybacizans unknown and skyrin (det. J.A. Elix).

ILLUSTRATION.—Hale, 1989a, fig. 33.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Confined to upper Namaqualand, X. springbokensis differs from closely related X. neosynesthesia in more irregular, adnate lobes, distinctive olive green color, strong...
rugosity, and presence of skyrin. Another Namaqualand species, *X. denudata*, is very close but has sublinear lobes and loosely adnate habit.

Xanthoparmelia standaei

Figure 65e

Xanthoparmelia standaei (Gyelnik) Hale, 1974b:489.
Parmelia standaei Gyelnik, 1934c:164.
Thallus Hacienda d'Angas-mura, Depto. Libertad, Peru.
Standaert s.n. (BP, lectotype; TUR, isolecotype; designated type in Bouly de Lesdain herbarium destroyed.)
Parmelia subconstrictans Vainio ex van der Byl, 1931:13.
Nomen nudum with no description given.
Nomen nudum with no locality given.

Description.—Thallus loosely adnate to nearly free growing on soil, firm, pulvinate, 4–8 cm broad, dull yellowish green, darkening with age at the center; lobes sublinear, 0.8–1.5 mm wide, short, irregularly dichotomously branched, becoming weakly convoluted, contiguous to imbricate, sparsely laciniate with age; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines brown, simple, 0.3–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia rare, substititate, 1–3 mm in diameter; spores 5–6 × 9–10 μm.

Chemistry.—Stictic, constrictic, cryptostictic (trace), norstictic, connorstictic (±), and usnic acids.

Distribution.—Venezuela, Ecuador, Peru.

Comments.—Vainio apparently intended to publish this species as *P. subconstrictans* (in herb.), using the same duplicate specimen that Gyelnik had received from Bouly de Lesdain. It grows as small scattered pulvinate clumps on sandy soil in arid, high elevation localities in the Andes Mountains.

Xanthoparmelia stenosporonica

Xanthoparmelia stenosporonica Hale, 1986b:598.
Thallus Summit of Swartberg Pass on Hwy R328, elev. 1585 m, Cape Province, South Africa, Grid 3322 AC, *Hale* T2117, 31 Jan 1986 (US, holotype; LD, PRE, isotypes.)

Description.—Thallus tightly adnate on rock, 1–2 cm broad, light yellowish green; lobes subirregular to sublinear, 0.2–0.7 mm wide, short, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, shiny, black, moderately rhizinate, the rhizines black, simple, 0.1–0.2 mm long. Pycnidia and apothecia lacking.

Chemistry.—Stenosporonic (major), colensoic, gyrophoric (±), divaronic (trace), norcolensoic (±), and usnic acids (det. J.A. Elix).

Illustration.—Hale, 1986b, fig. 47.

Distribution.—South Africa (Cape Province).

Comments.—This inconspicuous, black-rimmed species grows in exposed, high elevation habitats in southwestern Cape Province. The isidiate morph, *X. keralensis*, is known from Southern Africa and India. A related, chemosyndromic species, *X. colensoica*, contains colensoic acid as the major metabolite.

Xanthoparmelia streimannii

Parmelia streimannii Elix and Armstrong, 1983:481.
Type collection: Teudts Hill, 5 km SW of Bundanoon, N.S.W., Australia, Elix 8977 (MEL, holotype).

Description.—Thallus adnate on rock, 4–7 cm broad, dull yellowish green; lobes subirregular, 0.7–1.5 mm wide, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, densely isidiate, the isidia cylindrical (Figure 19h), 0.07–0.10 mm in diameter, 0.1–0.5 mm high, the tips syncorticate, darkening, becoming densely branched and coralloid; medulla white; lower surface plane, shiny, pale brown but darker near the tips, moderately rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–7 μm. Apothecia substipitate, 1–3 mm in diameter; spores 5 × 8 μm.

Chemistry.—Norstictic, connorstictic, salazinic (±trace), and usnic acids.

Illustration.—Elix and Armstrong, 1983, fig. 11.

Distribution.—Australia (Qld, NSW, ACT, Tas, SA), New Zealand.

Comments.—Externally similar *X. antleriformis* from Australia has salazinic acid as the main component. Another Australian species, *X. segregata*, has both norstictic and salazinic acids in significant concentration.

Xanthoparmelia stuartensis

Figure 65f

Type collection: Mount Stuart, 10 km SSW of Townsville, Queensland, Australia, Elix 21227, 3 Jul 1986 (CBG, holotype).

Description.—Thallus adnate on rock, 4–8 cm broad, firm, light yellowish green; lobes subirregular, 1–2 mm wide, short and irregularly branched, contiguous to imbricate, often black-rimmed; upper surface continuous, emaculate, shiny, transversely cracked with age, moderately isidiate, the isidia globose to short cylindrical, 0.05–0.08 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, dull, pale or brownish, sparsely branched; medulla white; lower surface plane, brown to dark brown, blackish toward the tips, moderately rhizinate, the rhizines brown to dark brown, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, substipitate, 1–4 mm in diameter; spores 4–6 × 8–10 μm.

Chemistry.—Protocetraric (major), virensic (minor), and usnic acids.
Xanthoparmelia subamplexuloides

Figure 66a

Xanthoparmelia subamplexuloides Hale, 1989a:559. [Type collection: on sheltered schistose sandstone, 51 km S of Windhoek on west side of Hwy 1/5 (opposite entrance to Bergland), elev. 1700 m, South West Africa/Namibia, Grid 2217 CC, *Hale* 81144, 26 Apr 1988 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, fragile, 4–7 cm broad, yellowish green; lobes subirregular, 0.4–1.3 mm wide, short and irregularly branched; upper surface continuous, emaculate, shiny, subrugose and transversely cracked with age, sparsely to moderately isidiate, the isidia mostly basally constricted and globose to subcylindrical, easily breaking off but not erumpent, 0.06–0.08 mm in diameter, to 0.5 mm high, the tips pale, weakly epicoricate, unbranched; medulla white; lower surface pale brown, sparsely rhizinate, the rhizines pale brown, simple, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone, unknowns, and usnic acid.

ILLUSTRATION.—*Hale*, 1989a, fig. 34.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—Near adnate South African *X. amplexuloides*, this Namibian species has smaller lobes and narrower isidia. *Xanthoparmelia subamplexuloides* grows widely in semi-arid uplands dominated by grassland and low shrubby Acacias; *X. amplexuloides* occurs in the moist Drakensberg escarpment.

Xanthoparmelia subbullata

Figure 66b

Xanthoparmelia subbullata Hale, 1989a:559. [Type collection: On dolerite outcrops along road, 8.5 km W of junction Hwy R396 and Hwy R393 near Mosesh’s Ford, elev. 1900 m, Cape Province, South Africa, Grid 3027 DD, *Hale* 77072, 10 Oct 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate on rock, 5–7 cm broad, light yellowish green; lobes sublinear, 1–2 mm wide, rather short and irregularly branched, contiguous to crowded at the center; upper surface continuous, emaculate, shiny, rugose and densely bullate-isidiate with age, the isidia fragile, 0.2–0.3 mm in diameter, sometimes breaking open but not sorediate; medulla white; lower surface plane, brown, moderately rhizinate, the rhizines brown, simple, 0.5–1 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–6 µm. Apothecia adnate, 1–2 mm in diameter; spores not developed.

CHEMISTRY.—Salazinic, consalazinic, connorstictic, and usnic acids, chalybeaizans unknown.

ILLUSTRATION.—*Hale*, 1989a, fig. 35.

DISTRIBUTION.—South Africa (Cape Province), Lesotho.

COMMENTS.—This species is obviously related to the widespread *X. chalybeaizans* but is differentiated by the abundant production of coarse bullate isidia. It is known from three collections in the Drakensberg escarpment.

Xanthoparmelia subcolorata

Figure 66c

Xanthoparmelia subcolorata Hale, 1986b:598. [Type collection: 19.9 km NW of Kango Caves on Swarberg Pass Road, elev. ca. 1100 m, Cape Province, South Africa, Grid 3322 AC, *Hale* 73014, 31 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely attached on rock, forming discrete, nearly umbiliculate colonies, usually breaking apart when collected, 6–20 cm broad, dark yellowish green; lobes sublinear, 1.5–3 mm wide, crowded and imbricate, subascending; upper surface moderately to strongly white-macular, shiny, deeply transversely cracked, isidia and soredia lacking; upper medulla white, lower medulla ochre; lower surface plane, pale or darker brown with ochre spots, blackening toward the tips, strongly rugose and in part eroding with age toward the center, rhizines lacking or very sparse, brown, coarse, to 1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 µm. Apothecia common, stipitate, 5–10 mm in diameter; spores 5–6 × 10–12 µm.

CHEMISTRY.—Protocetraric and usnic acids, skyrin.

ILLUSTRATION.—*Hale*, 1986b, fig. 48.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This loosely adnate, almost umbilicate lichen resembles *X. denudata*, which has a similar lower surface and skyrin but differs in having salazinic acid as the main component and narrower lobes. It also falls close to *X. austroafricana*, which has a more typically foliose thallus and lacks both skyrin and distinct maculae. It is most common in Namaqualand.

Xanthoparmelia subconvoluta

Figure 66d

Xanthoparmelia subconvoluta Hale, 1989a:561. [Type collection: Flat dolerite ridge in pasture, 6.8 km S of Sutherland on Hwy R354, elev. 1500 m, Cape Province, South Africa, Grid 3220 BC, *Hale* 74455, 29 Jan 1986 (US, holotype; ANUC, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on pebbles, rarely in part free growing on adjacent soil, rather leathery, 6–8 cm broad, light yellowish green; lobes sublinear, 0.7–2 mm wide, elongate and little branched, weakly to moderately convoluted, separate to imbricate; upper surface continuous, emaculate, shiny, rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, brown, moderately to densely
rhizinate, the rhizines comparatively long and protruding from below, dark brown, unbranched, 0.5–1 mm long. Pycnidia common; conidia weakly bisporiferous, 0.5 × 5–6 μm. Apothecia well developed, subpulvinate, 1–2 mm in diameter with inrolled rim; spores 5–9 × 10–10 μm.

CHEMISTRY.—Salazinic (major), consalazinic, norstictic (trace), and usnic acid.

ILLUSTRATION.—Hale, 1989a, fig. 36.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Somewhat related to the fragrant X. chlorochroa group in overall habitus, X. subconvoluta is loosely attached to pebbles and is not so strongly convoluted as to hide the dense, protruding mass of rhizines. It is also close to canaliculate X. amphiyanthoides, which has terete laciniae and occurs with it in Namaqualand and the Little Karoo.

Xanthoparmelia subcrustacea

Xanthoparmelia subcrustacea (Gyelnik) Hale, 1984:79.

Parmelia subcrustacea Gyelnik, 1935:30. [Based on *Parmelia conspersa* var. *stenophylloides* Müller Argoviensis.]

Parmelia conspersa var. *stenophylloides* Müller Argoviensis, 1892a:193.

[Type collection: Everett Ranges, S.A., Australia, *Helms 95* (G, lectotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, 2–4 cm broad, dark yellowish green; lobes subirregular, 1–2 mm wide, contiguous to imbricate, crowded at the center; upper surface continuous, emaculate, shiny, rugulose, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bisporiferous, 0.5 × 5–6 μm. Apothecia common, subpulvinate, 1–2 mm in diameter; spores 4 × 9 μm.

CHEMISTRY.—Hypostictic, hyposalazinic, hypoconstitic (±), constrictic (±), and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 16.

DISTRIBUTION.—Australia (NSW, ACT, Vic, SA, WA).

COMMENTS.—Müller Argoviensis listed three collections for his variety, of which Gyelnik (1935) chose *Helms 95* as the lectotype. The other two represent X. *laxicrustans* (Everard Ranges, *Helms 86*) and X. *elixii* (Depot no. 1, *Helms s.n.*) (Elix, Johnston, and Armstrong, 1986).

Xanthoparmelia subdecipiens

FIGURE 66e

Xanthoparmelia subdecipiens (Vainio) Hale, 1974b:489.

FIGURE 66e.—Species of *Xanthoparmelia*: a, *X. subcomplexoides* (Hale 81144, holotype in US); b, *X. subbulla* (Hale 77072, holotype in US); c, *X. subcolorata* (Hale 73014, holotype in US); d, *X. subconvoluta* (Hale 74455, holotype in US); e, *X. subdecipiens* (Hõeg s.n.); f, *X. subdiffusus* (Boras 619, isotype in US). Scale in mm.

DESCRIPTION.—Thallus adnate to loosely adnate on soil, 3–7 cm broad but breaking apart into separate lobes, darkish yellow green; lobes sublinear, 2.5–7 mm wide, strap-shaped and a little branched, weakly or less commonly strongly convoluted, separate; upper surface finely white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown to dark brown, moderately rhizinate, the rhizines brown, simple, 0.5–1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATIONS.—Mereschkowsky, 1918, fig. 1 (as *Parmelia conspersa* f. *vaga*); Hale (1987b), fig. 19.
DISTRIBUTION.—Hungary, France, Spain, USSR.

COMMENTS.—This terricolous, vagrant lichen is especially common on arenaceous soils south of Budapest. It differs from X. pseudohungarica in the flattened lobes and fragmented thallus. A form with strongly convoluted lobes (var. heraultensis) occurs rarely in France and Spain. Less strongly convoluted f. vaga occurs in the Ukraine (Mereschkowsky, 1918).

Xanthoparmelia subdistorta

Figure 67a

Xanthoparmelia subdistorta (Kurokawa) Hale, 1974b:489.

Pamela subdistorta Kurokawa, 1969:212. [Type collection: 6 mi W of Red Cliffs along Werrimull Road, Vict., Australia, *Kurokawa* 6617 (TNS, holotype; B, DUKE, M, US, isotypes).]

DESCRIPTION.—Thallus loosely adnate, less commonly free growing on soil, firm, 4–10 cm broad, yellowish green; lobes sublinear, 0.8–1.2 mm wide, rather strongly convoluted, dichotomously branched, separate to subimbicate, revolute near the tips, secondary subterete lobes sometimes developing toward the center; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to canaliculate, usually with a conspicuous yellow rim, pale brown or darkening at the tips, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–8 μm. Apothecia substipitate, 2–5 mm in diameter; spores 6–7 × 9–10 μm.

CHEMISTRY.—Nolobaridone, loxodin, and usnic acid.

ILLUSTRATION.—Kurokawa, 1969, pl. 1: fig. 3.

DISTRIBUTION.—Australia (Vic, SA, WA).

COMMENTS.—This species occurs rather rarely in arid mallee scrub and shrublands. Another nolobaridone-containing soil species, *X. eilifii*, has broader, laciniate lobes that are not at all terete.

Xanthoparmelia subdomokosii

Figure 67b

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm, 3–12 cm broad but sometimes coalescing into colonies 20–30 cm across, light yellowish green; lobes subirregular, 2–4 mm wide, more or less apically rotund, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; upper medulla white, lower medulla in part ochre; lower surface plane, pale brown to brown with an orange tinge in places, moderately rhizinate, the rhizines pale brown simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–8 mm in diameter; spores 4–5 × 8–9 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1971a, fig. 3D.

DISTRIBUTION.—Lesotho, South Africa (Transvaal, Natal, OFS, Cape Province).

COMMENTS.—This conspicuous lichen, one of the most widespread and easily recognized in southern Africa, usually has a brilliantly pigmented lower surface. The specimens from Australia (Elix, Johnston, and Armstrong, 1986) lack skyrin and represent the related species *X. prodromokosii*.

Xanthoparmelia suberadicata

Pamela suberadicata des Abbayes, 1961:89. [Type collection: Route d’Ivato Ambatohanandrahana, km 12, Centre Moyen, Madagascar, *des Abbayes* s.n. (REN, holotype; H, US, isotypes).]

DESCRIPTION.—Thallus loosely adnate on rock, pulvinate, 4–6 cm broad, light yellowish green; lobes linear, 0.5–1 mm wide, elongate and dichotomously branched, separate to subimbicate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, rugose; rhizines lacking or very sparse, coarse, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–5 mm in diameter; spores absent.

CHEMISTRY.—Stictic, constictic, cryptostictic (trace), norstictic (trace), and usnic acids.

ILLUSTRATION.—Des Abbayes, 1961, fig. 1.

DISTRIBUTION.—Australia (Vic), New Zealand, Madagascar.

COMMENTS.—This rare species belongs to a complex group of stictic acid-containing, nonsidated lichens with a black lower surface. This group includes *X. austrocapsensis*, *X. planilobata*, and *X. simulans*. The distinguishing features of *X. suberadicata* are the elongate lobes and a rugose, largely rhizine-free lower surface.

Xanthoparmelia subflabellata

Xanthoparmelia subflabellata (Steiner) Hale, 1974b:489.

Pamela subflabellata Steiner, 1907:639. [Type collection: Stellenbosch, South Africa, *DuToit* 7 (W, lectotype; G, isotype).]

Pamela tananarivensis Gyelnik, 1934c:165. [Type collection: Tananarive, Madagascar, *Decary* s.n. (PC, lectotype; BP, isotype).]

Pamela laxa f. subtanarivensis Gyelnik, 1934c:160. [Type collection: Tananarive, Madagascar, *Decary* s.n. (PC, lectotype; BP, isotype).]

Pamela vagans f. subflabellata (Steiner) Gyelnik, 1935:50.

Pamela conserpis f. subtanarivensis (Gyelnik) Gyelnik, 1936:124.

Pamela desertorum f. subflabellata (Steiner) Gyelnik, 1938b:6.

Xanthoparmelia tananarivensis (Gyelnik) Hale, 1974b:489.

DESCRIPTION.—Thallus loosely adnate to free growing on soil, forming rosettes 2–4 cm broad, easily breaking apart, light yellowish green; lobes sublinear, 0.8–1.6 mm wide, dichotomously branched, separate to contiguous; upper surface...
continuous to very weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane to weakly canaliculate with an indistinct or pale rim, uniformly dark brown at the center, sparsely rhizinate, the rhizines brown, simple to furcate, 0.5–1 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 6–7 μm. Apothecia common, subcylindric, 2–4 mm in diameter; spores 5–6 × 7–8 μm.

CHEMISTRY.—Stictic (major), constictic, crypstopastic, norstictic, and usnic acids.

DISTRIBUTION.—South Africa (Cape Province), Madagascar.

COMMENTS.—This soil lichen is known from only a few localities in Cape Province and in Madagascar. It is now extinct at the type locality near Stellenbosch. It is closely related to the Australian X. amphixantha, which has a more clearly white-maculate upper surface, a pale brown lower surface and more distinct rim below.

Xanthoparmelia sublaevis

Figure 67c

Pamiria sublaevis Coutinho, 1916:71. [Type collection: *Ad rupeus* synemicus in *Alqbariorum*, Serra de Foia, Portugal, Mendes s.n., Sep 1915 (LISU, lectotype).]

Pamiria conspersa var. *hypoclysta* Nylander, 1860:391. [Type collection: France, [Planchon s.n.] (H-Nyl. herb. no 34757, lectotype; G, isolectotype).]

Imbricaria conspersa var. *hypoclysta* (Nylander) Jatta, 1902:470.

Pamiria mollisscula var. *hypoclysta* (Nylander) Suza, 1930:26. [Invalid combination without citation of basionym.]

Pamiria stenophylla f. *hypoclysta* (Nylander) Magnusson in Magnusson and Zahlbruckner, 1944:86.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather firm, 5–8 cm broad, yellowish green; lobes subirregular to sublinear, 1.5–3 mm wide, the tips subrotund to obtuse, rather short and irregularly branched, imbricate, coarsely laciniate with age; upper surface continuous to very faintly white-maculate in patches, shiny, somewhat rugulose with age, soredia and isidia lacking; medulla white; lower surface plane, light brown, sparsely to moderately rhizinate, the rhizines brown, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia well developed, subcylindric, 2–5 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

DISTRIBUTION.—France, Spain, Portugal.

COMMENTS.—This poorly known species was briefly mentioned by Tavares (1945) in a study of the lichen flora of Portugal, but he did not attempt to establish its identity. The ample type material is adnate on rock fragments and compares well with Nylander’s identifications of *Pamiria conspersa* var. *hypoclysta*. It is closely related to *X. somloensis*, which has more strongly sublinear lobes and distinct white maculae, but it seems to be restricted to the Iberian Peninsula and Sardinia.

Xanthoparmelia subluminosa

Xanthoparmelia subluminosa Hale, 1989a:561. [Type collection: Coppins Crossing, elev. 600 m, Canberra, A.C.T., Australia. Hale 58524, 8 Jan 1982 (US, holotype; CHG, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, firm but easily breaking apart, 5–8 cm broad, light yellowish green; lobes subirregular, 1.5–3 mm wide, irregularly branched, dark brown rimmed, imbricate; upper surface continuous, emaculate, shiny, densely isidiate, the isidia cylindrical (Figure 19i), 0.10–0.15 mm in diameter, to 1 mm high, coarse, the tips syncorticate, black, simple to coralloid branched; upper medulla white, lower medulla in part dull reddish orange; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, coarse, unbranched, 0.4–0.8 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Salazinic (major), consalazinic (minor), norstictic (trace), and usnic acids, skyrin and a second unidentified anthraquinone (det. J.A. Elix).

ILLUSTRATION.—Hale, 1989a, fig. 37.

DISTRIBUTION.—Australia (ACT).

COMMENTS.—This is probably an isidiate morph of *X. luminosa*, another skyrin-containing lichen in Australia and South Africa. It is known only from the type collection near Canberra.

Xanthoparmelia submougeotii

Figure 67d

Xanthoparmelia submougeotii Hale, 1989a:561. [Type collection: Cordon Barril, Masafera, Juan Fernandez, C. and I. Skottsberg 90, 1 Mar 1917 (NY, holotype; US, isotype).]

DESCRIPTION.—Thallus adnate on rock, rather brittle and subpulvinate, 3–4 cm broad, dull yellowish green; lobes sublinear, 0.6–1.2 mm wide, rather short and irregularly dichotomously branched, brown rimmed, imbricate; upper surface continuous, emaculate, shiny, sorediate, the soralia subterminal, capitate, 0.5–1 mm in diameter; medulla white; lower surface plane, dark brown at the tips but black at the center, shiny, rugulose, moderately rhizinate, the rhizines black, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 36.

DISTRIBUTION.—Chile (Juan Fernandez).

COMMENTS.—This rare sorediate species is related to *X. mougeotii*, a much smaller, very tightly adnate lichen.
Xanthoparmelia subnigra

Xanthoparmelia subnigra Hale, 1986b:600. [Type collection: Summit of Long Tom Pass on S side of Hwy R37, Farm De Kuiten 205, elev. 2140 m, Lydenburg, Transvaal, South Africa, Grid 2430 BA, *Hale* 72026, 16 Jan 1986 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus adnate to tightly adnate on rocks, 4–6 cm broad, light yellowish green; lobes subirregular to sublinear, 1–2.5 mm wide, contiguous to imbricate, black-rimmed; upper surface continuous, emaculate, shiny, minutely rugulose, isidia and soredia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia numerous, adnate, 1–2 mm in diameter; spores 6–7 × 8–10 μm.

CHEMISTRY.—Fatty *subdecipiens* unknowns 33 and 37 (major), constipatic (minor), pertusaric (trace), and usnic acid.

ILLUSTRATION.—Hale, 1986b, fig. 50.

DISTRIBUTION.—South Africa (Transvaal).

COMMENTS.—No other nonisidiate constipatic acid series-containing species of *Xanthoparmelia* have a black lower surface, excepting *X. aliphatita*, which is a much larger, loosely adnate lichen, and Australian *X. nigraoleosa*, which contains constipatic acid. This one is rather rarely collected in the moist Drakensberg escarpment of Transvaal.

Xanthoparmelia subnuda

FIGURE 67e

Xanthoparmelia subnuda (Kurokawa) Hale, 1974b:489.

Parmelia subnuda Kurokawa in Kurokawa and Elix, 1971:114. [Type collection: Ardgen Gap, Liverpool Range, 5 mi N of Murrurundi, N.S.W., Australia, Kurokawa 5178 (TNS, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, firm, often forming pulvinate colonies, 4–10 cm broad, yellowish green; lobes sublineal to linear, 1–2 mm wide, more or less dichotomously branched, elongate and subascending, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, becoming rugulose with age, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subistipitate, 3–10 mm in diameter; spores 5 × 8–9 μm.

CHEMISTRY.—Norstictic (major), salazinic (±), conrostictic, and usnic acids. (Barbatic and rhizonic acids given in type description are incorrect and salazinic acid was omitted.)

Xanthoparmelia sub pallida

Xanthoparmelia sub pallida Hale, 1987a:264. [Type collection: Robinson Pass (N of Mosselbaai), Cape Province, South Africa, Grid 3322 CD, *Hale* 77588 (US, holotype; PRE, isotype).]

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, 3–8 cm broad, dull yellowish green; lobes sublinear, 0.3–0.8 mm wide, little branched, separate to imbricate and crowded; upper surface continuous, emaculate, sparsely to moderately isidiate, the isidia cylindrical to irregularly inflated, 0.08–0.15 mm in diameter, to 0.3 mm high, the tips syncorticate, pale; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale, simple, delicate and nearly translucent, 75–90 μm in diameter, −0.1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987, fig. 21.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Other stictic acid-containing species with a pale lower surface include *X. plitii* and *X. neopropagulifera*.

ILLUSTRATION.—Kurokawa and Elix, 1971, fig. 2.

DISTRIBUTION.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—This is a common lichen on rocks in drier mountain and subarid areas. *Xanthoparmelia rubireagens*, an externally similar Australian species, has a rugose, sparsely rhizinate lower surface and salazinic acid as the main component.
Both of these species have broader lobes and more robust rhizines and are nowhere nearly as tightly adnate. Another species found in the moist Pynbos vegetation zone, *X. greytonensis*, has very similar delicate rhizines and tight adnation, very reminiscent of subcrustose *Karoovia*, but is easily distinguished by the black lower surface and lack of rhizines.

Xanthoparmelia subpigmentosa

Figure 6a

Xanthoparmelia subpigmentosa Hale, 1984:78. [Type collection: Blue Mountain Pass, Div. Masera, Lesotho, Kofler 3669 (LD, holotype; US, isotype).]

DESCRIPTION.—Thallus loosely adnate on rock, firm and leathery, 8–12 cm broad, yellowish green; lobes sublinear, 2–5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, isidiate and sorediate lacking; upper medulla white, lower medulla ochre in part; lower surface plane, pale brown to brown with an orange tinge in places, moderately to densely rhizinate, the rhizines pale brown, simple, 0.5–1 mm long. Pycnidia common; conidia bicusiform, 0.5 × 5–6 μm. Apothecia common, subtusitate, 3–10 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1984, fig. 9.

DISTRIBUTION.—Lesotho, South Africa (Cape Province), Australia (NSW).

COMMENTS.—This large, conspicuous lichen resembles a robust *X. taractica* but the lower surface is pigmented. It is common at higher elevations on dolerite in Lesotho but also occurs on Cave sandstones at 2000 m in eastern Cape Province. It has been collected once in Australia at higher elevation.

Xanthoparmelia subplittii

Figure 6b

DESCRIPTION.—Thallus tightly adnate to adnate on rock, rather fragile, 2–7 cm broad, light yellowish green; lobes subirregular to sublinear, 0.8–1.5 mm wide, dichotomously branched, sparsely lobulate-laciniate at the tips of older lobes, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia globose to subcyllindrical (Figure 20a), 0.08–0.15 mm in diameter, 0.1–0.5 mm high, basally constricted, the tips epicorticate, pale or blackening, easily abrading, erumpent apically but not sorediate, mostly unbranched; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 20.

DISTRIBUTION.—Colombia, Venezuela, Brazil, Paraguay.

COMMENTS.—This widespread but rarely collected lowland tropical species is close to *X. plittii* except for the globose, erumpent isidia.

Xanthoparmelia subramigera

Figure 6c

Xanthoparmelia subramigera (Gyelnik) Hale, 1974b:489.

Parmelia subramigera Gyelnik, 1931b:281. [Type collection: Rainbow Fall, Hawaii, USA, Faurie 856 (BP, lectotype; BM, PC, isolectotypes; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia conspersa var. hypoclysta f. isidiosa Müller Argoviensis, 1883:47. [Type collection: Bourbon, *Lepervanche* [97] (G, lectotype).]

*Parmelia conspersa var. ambiguа Zahembrucker, 1911:30. [Type collection: Diamond Head, Oahu, Hawaiian Islands, *Rechinger* 2596 (W, lectotype).]

Parmelia luciana var. decipiens Vainio, 1915:24. [Type collection: Buck Island, St. Thomas, *Borgesen* s.n. (TUR, Vainio herb. no. 2836, lectotype (Gyelnik, 1938b:30); C, isolectotype).]

Parmelia hiroskiensis Gyelnik, 1934c:155. [Type collection: Castello Hiroaski-Aomori, Japan, Faurie 1077 (BP, lectotype; PC, isolectotype).]

Parmelia ambiguа var. isidiosa (Müller Argoviensis) Gyelnik, 1936:125.

Parmelia abstrusa var. subramigera (Gyelnik) Gyelnik, 1938b:17.

Parmelia ambiguа f. indiana Gyelnik, 1938a:269. [Type collection: St. John, Antigua, Evans 210 (BP, lectotype; YU, isolectotype).]

Parmelia geylnecki Dodge, 1959:62. [Based on *Parmelia conspersa var. hypoclysta f. isidiosa* Müller Argoviensis.]

Parmelia subhypoclysta Dodge, 1959:64. [Based on *Parmelia conspersa var. hypoclysta f. isidiosa* Müller Argoviensis.]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather firm, 4–12 cm broad, dull yellowish green; lobes subirregular to sublinear, 1.5–4 mm wide, contiguous to imbricate; upper surface continuous to weakly white-maculate, shiny, moderately to densely isidiate, the isidia subglobose to cylindrical (Figure 20b), 0.08–0.15 mm in diameter, 0.2–1 mm high, the tips syncortic, pale brown, simple to sparsely branched; medulla white; lower surface plane, pale brown to brown, variably sparsely to moderately rhizinate, the rhizines pale brown to brown, simple, 0.5–1 mm long. Pycnidia rarely
developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subtuspite, 2–10 mm in diameter; spores 5–6 × 10–11 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric (±), physodalic (±), and usnic acids.

DISTRIBUTION.—USA, Mexico, Costa Rica, Jamaica, Cuba, Dominican Republic, Dominica, St. Barthelemy, Venezuela, Colombia, Brazil, Hawaii, USSR, Zimbabwe, Angola, SWA/Namibia, South Africa (Transvaal, Venda, Natal, Cape Province, Ciskei), Swaziland, Lesotho, Kenya, Uganda, Madagascar, Saudi Arabia, Sudan, Japan.

COMMENTS.—One of the most widespread subtropical species in the genus, *X. subramigera* is quite variable in adnation and lobe configuration and width. Although all of the numerous described taxa share cylindrical isidia, a pale or darker brown lower surface and fumarprotocetraric acid, future workers may segregate some of the populations as distinct species. The black lower surface morphotype is *Xanthoparmelia mbanabanensis* from Natal and Swaziland has a black lower surface. There is one chemotype (*X. natalensis*) with diffractaic acid in addition to fumarprotocetraric acid in Natal. This species may have evolved from *X. phaeophana*, a very common, distinctly white-maculate species in southern Africa.

Xanthoparmelia subruginosa

Figure 68d

Xanthoparmelia subruginosa Hale, 1986b:602. [Type collection: Oribi Gorge Nature Reserve, elev. 300 m, Natal, South Africa, Grid 3030 CB, Hale 74042, 3 Feb 1986 (US, holotype; LD, PRE, isotypes].]

DESCRIPTION.—Thallus adnate to loosely adnate on flat rocks, 6–10 cm broad, bright yellowish green; lobes sublinear, dichotomously branched, usually subascending, 0.5–1.5 cm wide, divaricate to subimbricate; upper surface continuous to weakly white-maculate on some older lobes, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, smooth to rugose, black, the tips with a yellowish rim, rhizines absent. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic (major), constictic (minor), cryptostictic (trace), and usnic acids, unknown triterpene (trace), atranorin (trace) (det. J.A. Elix).

ILLUSTRATION.—Hale, 1986b, fig. 52.

DESCRIPTION.—South Africa (Natal), Zimbabwe.

COMMENTS.—This unusual ericoid species is common on sandstones in Natal. Another nonisidiate stictic acid-containing species in South Africa which lacks rhizines, *X. albomaculata*, is generally more adnate, has shorter, more subirregular lobes, a coriaceous thallus and distinct macule on the surface. *Xanthoparmelia subradicaata* from Madagascar has narrower, more elongate, divaricate lobes, usually not more than 1 mm wide.

Xanthoparmelia subsorediata

Figure 68e

Xanthoparmelia subsorediata Hale, 1987b:332. [Type collection: Páramo La Negra, Estado Mérida, Venezuela, elev. 3000 m, López-Figuereas and Morales-Mendt 29017, 23 Mar 1982 (US, holotype; MERP, isotype].]

DESCRIPTION.—Thallus adnate on rock, 5–8 cm broad; dark yellowish green; lobes sublinear, 0.7–1.5 cm wide, irregularly branched, crowded and imbricate; upper surface continuous, emaculate, shiny at the tips, dull with age, densely isidiate, the isidia globose (Figure 20e), 0.08–0.2 mm in diameter, 0.1–0.4 mm high, the tips epicotricate, brownish, erumpent and subsorediate, mostly unbranched to sparingly branched, soon crowded and covering most of the thallus; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines brown, simple, 0.3–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 21.

DISTRIBUTION.—Dominican Republic, Venezuela, Ecuador.

COMMENTS.—This rare high elevation species is very similar to *X. cordillerana*, an Andean/Australasian species with salazinic acid.

Xanthoparmelia substenophylloides

Xanthoparmelia substenophylloides Hale, 1989a:562. [Type collection: Sandstone ledges, about 5 km E of Holy Forest (NW of Thoboyandu), elev. 1000 m, Venda, South Africa, Grid 2230 CD, Hale 79148 (US, holotype].]

DESCRIPTION.—Thallus tightly adnate on rock, 2–6 cm broad, light yellowish green but darkening at the center; lobes sublinear, 0.4–1 mm wide, elongate, dichotomously branched, separate to contiguous, laciniate marginally with age, the laciniae dichotomously branched, 0.2–0.4 mm wide; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical (Figure 20d), 0.06–0.13 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, brownish, simple or sparingly branched; medulla white; lower surface plane, dark brown at the tips but blackening at the center, shiny, moderately rhizinate, the rhizines black, simple, 0.1–0.2 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1989a, fig. 39 (as *X. stenophylloides*).

DISTRIBUTION.—USA, Panama, Venezuela, Brazil, Paraguay, South Africa (OFS, Venda).

COMMENTS.—This previously poorly understood but widespread species is characterized by the elongate, separate, little-branched lobes, and delicate pale-tipped isidia. The South African *X. pseudocongensis* is close but has shorter, black-rimmed, crowded lobes and black-tipped isidia. The Australa-
sian X. mougetina has subglobose, black-tipped isidia and larger cylindrical conidia.

Xanthoparmelia subrigosa

Figure 68f

Xanthoparmelia subrigosa (Hale) Hale, 1974b:489.
Parmelia conspersa var. subrigosa Müller Argoviensis, 1896:90. [Type collection: Beechworth, Vict., Australia, Faick 12 (G, lectotype).]
Parmelia conspersa f. subrigosa (Müller Argoviensis) Geyelnik, 1936:123.

Description.—Thallus loosely adnate to nearly free growing on rocks, soil or loose pebbles, firm, 6–12 cm broad, yellowish green; lobes sublinear, 2.5–6 mm wide, strap-shaped, sparsely branched, contiguous to imbricate; upper surface continuous and emaculate to distinctly white-maculate; shiny, isidia and soredia lacking; medulla white; lower surface plane, brown, densely rhizinate, the rhizines long and becoming furcate, brown, 0.3–1.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, subapplanate, 3–12 mm in diameter; spores 5 × 9–10 μm.

Chemistry.—Norstictic (major), connorstictic, salazinic (±), consalazinic (±), and usnic acids.

Illustration.—Galloway, 1980, fig. 12.

Distribution.—Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand.

Comments.—This common Australasian species is characterized by the broad, strap-shaped lobes, dense furcate rhizines, production of norstictic acid, and frequent occurrence on soil. Rarer X. barbellata is similar in habit but has an ochre pigmented lower medulla.

Xanthoparmelia succedans

Xanthoparmelia succedans Elix and Johnston in Elix, Johnston, and Armstrong 1986:333.
Parmelia adpressa Krempelhuber ad int., 1876:72. [Type collection: Rio de Janeiro, Brazil, Glaziou 3842 (M, lectotype). Not *Parmelia appressa* Sprengel, 1807:58 (= Lobaria?)].

Description.—Thallus tightly adnate to adnate on rock, 4–6 cm broad; lobes subirregular to sublinear, contiguous to imbricate, 1–2 mm wide; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical to irregularly inflated (Figure 20e), 0.06–0.1 mm in diameter, 0.1–0.2 mm high, the tips syncorticate, pale, simple to branched; medulla white; lower surface plane, pale brown to brown, moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, subapplanate, 1–4 mm in diameter; spores 6 × 9 μm.

Chemistry.—Stictic (major), salazinic (minor), constictic (minor), cryptostictic (trace), norstictic (trace), and usnic acids.

Illustration.—Elix, Johnston, and Armstrong, 1986,fig. 35.

Distribution.—Australia (NSW, WA), Brazil.

Comments.—This rare member of the *X. plitii* group is characterized by the unique combination of acids. Krempelhuber (1876:72), suggesting an affinity with *X. conspersa*, described the lower surface as "subitus niger" but the type is pale brown below.

Xanthoparmelia sulcifera

Xanthoparmelia sulcifera (Kurokawa) Hale, 1984:79.
Parmelia sulcifera Kurokawa, 1982:37. [Type collection: 9 mi E of Cooma on Numeralla Road, N.S.W., Australia, Kurokawa 6450 (TNS, holotype).]

Description.—Thallus loosely adnate to free growing on soil but remaining intact, pulvinate, 3–10 cm broad, light yellowish green; lobes sublinear, 0.7–2 mm wide, weakly to distinctly convoluted, subdichotomously branched, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown or darkening, moderately to densely rhizinate, the rhizines pale brown or darkening, simple or sparsely branched, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rare, subapplanate, 1–3 mm in diameter; spores 4–6 × 10–11 μm.

Chemistry.—Hypstictic, hyposalazinic, hypoconstictic (±), and usnic acids.

Illustration.—Kurokawa, 1982, pl. 2: fig. 2.

Distribution.—Australia (NSW).

Comments.—This remarkable species is very common in sandy fields at Mt. Canobolas and at the type locality. Morphologically the nearest relative of this rare Australian lichen appears to be *X. wyomingica*, a high elevation terricolous lichen in western North America with salazinic acid and more distinctly convoluted lobes.

Xanthoparmelia surrogata

Figure 69a

Xanthoparmelia surrogata Hale, 1986:603. [Type collection: above Woodhead Reservoir (to Platteklip Gorge), Table Mountain Nature Reserve, elev. 800 m, Cape Province, South Africa, Grid 3318 CD, Hale 72084, 23 Jan 1986 (US, holotype; LD, PRE, isotypes).]

Description.—Thallus adnate to loosely adnate on rock, rather leathery, 6–10 cm broad, dull yellowish green; lobes sublinear-longate, 1–2 mm wide, separate to subimbricate; surface continuous, emaculate, shiny, becoming finely fissured toward the center, isidia and soredia lacking; upper medulla white, lower medulla orange-red; lower surface plane, black, shiny, moderately rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.
SMITHSONIAN CONTRIBUTIONS TO BOTANY

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, skyrin.

ILLUSTRATION.—Hale, 1986b, fig. 53.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—X. surrogata differs from X. luminosa, the only other species with this chemistry and a black lower surface, in having narrower, sublinear lobes and a leathery texture. It is known only from Table Mountain.

Xanthoparmelia swartbergensis

Figure 69b

Xanthoparmelia swartbergensis Hale, 1987a:264. [Type collection: Swartberg Pass, east side of road, elev. 1600 m, Cape Province, South Africa, Grid 3322 AC, Hale 77623, 20 Oct 1986 (US, holotype; ANUC, PRE, isotype).]

DESCRIPTION.—Thallus very tightly adnate on rock, appearing areolate at the center, 5–10 cm brown, dark yellowish green and darkening with age; lobes sublinear, 0.3–0.6 mm wide, rather elongate, sparingly dichotomously branched, 1–2 mm long, black rimmed, laciniate toward the center, the laciniae 0.1–0.2 mm wide; upper surface continuous to faintly white-maculate, shiny, isidial and soreidia lacking; medulla white; lower surface plane, shiny, black sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Fumarprotocetraric (major), protocetraric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 22.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is morphologically similar to other nonisidiate, centrally areolate species in South Africa such as *X. xanthomelaena* (stictic acid) or *X. conspersula* (salazinic acid). It is known only from the type collection at windswept Swartberg Pass.

Xanthoparmelia synestia

Figure 69c

Xanthoparmelia synestia (Stirton) Hale, 1974b:489.

Parmelia synestia Stirton, 1877:214. [Type collection: Cave Mountain, South Africa, M’Lea 413 (BM, lectotype).]

Parmelia conspersa var. *synestia* (Stirton) Gyelnik, 1937b:133. [Invalid combination with no citation of basionym.]

Parmelia conspersa var. *synestia* (Stirton) Gyelnik, 1938b:41.

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rather fragile, 5–12 cm broad, dark yellowish green; lobes subirregular to sublinear, 1–3 mm wide, often rather elongate, contiguous to imbricate, laciniate at the center with an age, black rimmed; upper surface white-maculate, shiny, transversely cracked, isidioid and soreidia lacking; medulla white; lower surface plane, dark brown to black with a narrow yellowish rim toward the tips, rugulose, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.6 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rather rare, substipitate, to 2–5 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids, chalybaceizans unknown (trace).

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This common karoo lichen is often found on low, protected, near-vertical south faces of rock outcrops in sheep paddocks. It has a distinctive dark greenish color and conspicuous maculae. *Xanthoparmelia neosynestia* is closely related but has a brown lower surface.

Xanthoparmelia tablensis

Figure 69d

Xanthoparmelia tablensis Hale, Nash, and Elix in Hale, 1986b:603. [Type collection: Trail from Plateklip Gorge to Woodhead Reservoir, Table Mountain Nature Reserve, elev. 1000 m, Cape Province, South Africa, Grid 3318 CD, Hale 72033, 23 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on rocks, 6–10 cm broad, bright yellowish green; lobes sublinear, 0.6–1.5 mm wide, elongated and dichotomously branched, becoming laciniate, imbricate; upper surface continuous, emaculate, shiny, isidioid and soreidia lacking; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, 0.5–1 mm long, simple. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia adnate to substipitate, 1–3 mm in diameter; spores 6–7 × 9–11 μm.

CHEMISTRY.—Hydroprotocetraric, 4-O-demethylnotatic, and usnic acids and several unidentified minor components.

ILLUSTRATION.—Hale, 1986b, fig. 54.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Other loosely adnate, hydroprotocetraric-acid-containing species include *X. hypoprotocetrarica*, a common effigate-maculate lichen in South Africa and Australia, and *X. contrasta*, a skyrin-containing species in South Africa. The present species is known from Table Mountain and several nearby localities.

Xanthoparmelia taractica

Figure 69e

Xanthoparmelia taractica (Krempelehaber) Hale, 1974b:489.

Parmelia taractica Krempelehaber, 1878:439. [Type collection: Argentina, Lorentz and Hieronymus s.n. (M, lectotype; G, W, isolectotypes).]

Parmelia conspersa var. *polypelloides* Müller Argoviensis, 1883:47. [Type collection: Fowlers Bay, Australia, Richard [118 p.p.] (G, lectotype; MEL, isolectotype).]

Parmelia ioannis-simae Gyelnik, 1931:283. [Type collection: Near Puebla, Santa Barbara, Estado Puebla, Mexico, Nicolas 5982 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia viridulo-umbra var. *rotundata* (Gyelnik) Gyelnik, 1932a:211.

Parmelia imitalis var. *ioannis-simae* (Gyelnik) Gyelnik, 1934b:372. [Invalid combination. Mentioned in a key without citing basionym.]
Parmelia laxa f. pueblana Gyelnik, 1934c:160. [Type collection: Totimehua, Hacienda Batan, Estado Puebla, Mexico, *Arsène* 8181 (BP, lectotype).]

Parmelia polyphyloides (Müller Argoviensis) Gyelnik, 1934b:371. [Invalid combination. Mentioned in a key without citing basionym.]

Parmelia conspersa f. pueblana (Gyelnik) Gyelnik, 1936:124.

Parmelia phaeophana (Gyelnik) Gyelnik, 1938b:35.

Xanthoparmelia ioinnis-simae (Gyelnik) Hale, 1974b:488.

DESCRIPTION.—Thallus adnate to loosely adnate on soil or rocks, 6–12 cm broad, yellowish green; lobes sublinear, 1–4 mm wide, dichotomously branched, laciniate with age, the laciniæ plane, separate to imbricate; upper surface continuous, emaculate to very weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately to densely rhizinate, the rhizines pale brown, simple to furcate, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia common, stipitate, 2–8 mm in diameter; spores 4–5 × 8–9 μm.

CHEMISTRY.—Salazinic, consalazinic, lobaric (±), and usnic acids, undetermined fatty acids (±).

DISTRIBUTION.—Western USA, Mexico, Colombia, Bolivia, Argentina, Australia (NSW, ACT, Vic, Tas, SA, WA), New Zealand.

COMMENTS.—I had earlier used *X. taractica* in a very broad sense, including *X. coloradoensis* and *X. somloensis*, but concluded from further field studies that *X. taractica* is primarily a soil lichen. It is confined to the New World from Argentina northward into Mexico and to Australasia (Elix, Johnston, and Armstrong, 1986). Kemplehuber (1878:439) mentioned a specimen (the type?) that he sent to Nylander and identified by him as *Parmelia congruens* but felt that *P. taractica* was distinct.

Xanthoparmelia tasmanica (Hooker and Taylor) Hale, 1974b:489.

DESCRIPTION.—Thallus adnate to usually loosely adnate on rock, rather firm, 6–15 cm broad, light yellowish green; lobes sublinear, 2–5 mm wide, contiguous to imbricate, more or less black rimmed; upper surface continuous, emaculate, shiny to dull, irregularly cracked and rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, simple, 0.3–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–7 μm. Apothecia common, stipitate, 2–10 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic (±), norstictic (±trace), protocetraric (±trace), and usnic acids.

ILLUSTRATION.—Filson and Rogers, 1979, pl. 13b.

DISTRIBUTION.—Canada, USA, Mexico, Peru, Argentina, Australia (Qld, NSW, ACT, Vic, Tas, SA, WA), New Zealand, Kenya, South Africa (Cape Province, Natal).

COMMENTS.—This is a very widespread species, large and conspicuous, easily recognized by the jet black lower surface, lack of maculae, and presence of salazinic acid. It is especially common in southern and eastern Australia, where it is quite uniform, and in South Africa, where numerous atypical populations differing in adnation and lobe configuration may represent distinct species. In Africa it may be confused and apparently intergrades with *X. africana*, which is pulvinate and white-maculate and has long dense rhizines, and with *X. neotassmanica*, which has strong white maculae. The absence of skyrin separates it from *X. luminosa* and *X. surrogata*.

Müller Argoviensis (1888c) correctly recognized the identity of *P. incisa*, *P. tasmanica* and *P. conspersa* var. *laxa* but chose to use varietal rank.

Xanthoparmelia tegeta Elix and Johnston in Elix, Johnston, and Armstrong, 1986:339. [Type collection: Diggers Creek, Kosciusko National Park, N.S.W., Australia, *Elix* 1718 (CBG, holotype; MEL, isotype).]

DESCRIPTION.—Thallus adnate on rock, sometimes forming loose, brittle, pulvinate mats, 6–9 cm broad, dark yellowish green; lobes sublinear to irregularly constricted, 0.7–1.5 mm wide, contiguous to imbricate, black rimmed; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, black, moderately rhizinate, the rhizines black, simple to barely branched, 0.2–0.5 mm long. Pycnidia common; conidia cylindrical, 0.5 × 6–7 μm. Apothecia common, stipitate, 1–3 mm in diameter; spores 5–6 × 9–10 μm.
CHEMISTRY.—Stictic (major), constictic, norstictic, cryptostictic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 36.

DISTRIBUTION.—Australia (NSW, ACT, Vic, Tas, WA); New Zealand, South Africa (Cape Province).

COMMENTS.—The thallus often becomes densely imbricate and forms compact mats. A related terricolous American species, *X. planilobata*, has nearly bare, strongly rugulose lower surface and separate to subimbricate lobes. Another closely related species by reason of the chemistry and cylindrical conidia is *X. xanthomelaena*, which is centrally areolate.

Xanthoparmelia tenacea

FIGURE 70a

Xanthoparmelia tenacea Knox and Hale in Hale, 1987b:332. [Type collection: Namib Kalanda Farm, escarpment slope of the highland, South West Africa/Namibia, *H. and E. Walter* 5131, 28 Apr 1975 (US, holotype; M, isotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 2–4 cm broad, dull yellowish green; lobes subirregular, 0.6–1.8 mm wide, short, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia globose to subcylindrical (Figure 20f), 0.09–0.15 mm in diameter, 0.1–0.15 mm high, the tips in part erumpent, crumpe-nt and easily eroding but not sorediate, unbranched; medulla white; lower surface brown to dark brown, moderately rhizinate, the rhizines simple, 0.1–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, norstictic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 22.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This species occurs in the semi-arid central highland of Namibia. Externally similar to the Australian *X. praegnans*, it is a smaller lichen with a dark brown lower surface. Another crumpe-nt South African species, *X. geesterlandi*, has a black lower surface.

Xanthoparmelia tenuiloba

FIGURE 70b

DESCRIPTION.—Thallus loosely adnate on rock, somewhat pulvinate, brittle, 4–6 cm broad, dark yellowish green; lobes sublinear to linear, 0.3–0.9 mm wide, dichotomously branched, rather elongate and laciniate, imbricate; upper surface continuous, emaculate, dull, isidia and soredia lacking; medulla white; lower surface plane to barely canaliculate, pale brown, sparsely rhizinate, the rhizines pale brown, simple to fuscate, 0.5–1 mm long. Pycnidia common; conidia weakly bifusiform, 0.5 × 5–6 μm. Apothecia not seen.

CHEMISTRY.—Norlobaridone (major), isonorlobariol (trace), unknown Rf.12, and usnic acid (det. J.A. Elix).

ILLUSTRATION.—Hale, 1987b, fig. 23.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This species is known only from two collections in the Dutoits Pass area, on ledges exposed to mists of the prevailing SW wind. *Xanthoparmelia metatomorphosa* from Australia has a shiny, faintly white-maculate upper surface, black-rimmed lobes, a nearly bare lower surface with short coarse rhizines, and a more loosely spreading thallus. This species is known only from two collections in the Dutoits Pass area, on ledges frequently exposed to mists of the prevailing strong southwesterly wind.

Xanthoparmelia terrestris

FIGURE 70c

Parmelia terrestris Kurokawa and Filson, 1982:574. [Type collection: 6 mi W of Red Cliffs along Werrimull Road, Victoria, *Kurokawa* 6615 (TNS, holotype; MEL, isotype).]

DESCRIPTION.—Thallus loosely adnate on soil or small pebbles, 6–9 cm broad, yellowish green; lobes sublinear, 1–2 mm wide, in part weakly convoluted, becoming dissected and imbricate with development of somewhat revolute, sуберете secondary lobes toward the center; upper surface continuous, emaculate, shiny to dull, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale brown, simple to fuscate, 0.5–1 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rare, substipitate, 2–8 mm in diameter; spores 6–7 × 8–10 μm.

CHEMISTRY.—Norstictic (major), salazinic, connorstictic, protocetraric (trace), and usnic acids.

ILLUSTRATION.—Filson, 1982, fig. 19.

DISTRIBUTION.—Australia (Vic, SA, WA).

COMMENTS.—This is another endemic Australian soil lichen, usually rather firmly attached to the soil and found chiefly in mallee scrub. It is nearest in habit to *X. eilifii*, which contains norlobaridone as the major component.

Xanthoparmelia terricola

FIGURE 70d

Xanthoparmelia terricola Hale, Nash, and Elix in Hale, 1986b:603. [Type collection: Brandwagrot, Golden Gate National Park, elev. ca. 1900 m, Orange Free State, South Africa, grid 2828 BC, *Hale* 74036, 11 Feb 1986 (US, holotype; LD, PRE, isotypes).]
DESCRIPTION.—Thallus adnate to loosely attached on rocks, pebbles and soil, often with the same thallus extending from soil to adjacent rocks, 6–15 cm broad, rather firm, yellowish green but darkening with age at the center; lobes sublinear, 1–1.5 mm wide, dichotomously branched, contiguous to imbricate; upper surface continuous, emaculate, shiny, emaculate, transversely cracked and somewhat rugose with age, isidia and soredia lacking; medulla white; lower surface plane, brown to dark brown, moderately rhizinate, the rhizines brown, 0.5–1 mm long, simple or furcate with white tips when young. Pycnidia common; conidial bifusiform, 0.5 × 5–6 μm. Apothecia common, subapplanate, 3–8 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic, norstictic (trace), protocetraric (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 55.

DISTRIBUTION.—South Africa (Transvaal, OFS, Natal), Zimbabwe.

COMMENTS.—This is the most common soil-inhabiting lichen at higher elevations (2000–3000 m) in the Drakensberg escarpment in South Africa. It has rather uniform, sublinear lobes with a brown to dark brown lower surface. Skyrin-containing X. subpigmentosa is the only comparable species in southern Africa.

Xanthoparmelia thamnoloides

Figure 70a

Xanthoparmelia thamnoloides (Kurokawa) Hale, 1974b:489.

Parmelia thamnoloides Kurokawa, 1969:213. [Type collection: Freshwater Gorge, NW of Cairns, Qld., Australia, Kurokawa 5723 (TNS, holotype; MEL, isotype).]

DESCRIPTION.—Thallus adnate on rock, 4–10 cm broad, dark yellowish green; lobes subirregular, 1–1.5 mm wide, contiguous to imbricate, more or less black rimmed; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia cylindrical (Figure 20g), 0.07–0.15 mm in diameter, 0.2–0.5 mm high, the tips syncorticate, darkening, becoming corallloid branched with age; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone, loxodin (±), conorobardone (±), scabrosin 4-acetate-4′-butyrate (±), scabrosin 4-acetate-4′-hexanoate (±), scabrosin 4,4′-dibutyrate (±), and usnic acid.

ILLUSTRATIONS.—Galloway, 1980, fig. 14; Kurokawa, 1969, pl. 1: fig. 4.

DISTRIBUTION.—Australia (Qld, NSW, Vic, Tas), New Zealand.

COMMENTS.—This is close to *X. ampluxia* but has a black lower surface. It is much rarer than *X. ampluxia*, occurring in eastern Australia and rarely in New Zealand.

Xanthoparmelia thamnoloides

Figure 70f

DESCRIPTION.—Thallus adnate on rocks, easily breaking apart, 5–8 cm broad, dark yellowish green; lobes subirregular to sublinear, 1.3–2.5 mm wide, imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia becoming dense with age, cylindrical (Figure 20a), 0.08–0.14 mm in diameter, 0.1–0.3 mm high, the tips syncorticate, becoming richly branched; medulla white; lower surface plane, black with a dark brown zone at the tips, moderately to densely rhizinate, the rhizines black, 0.5–2 mm long, simple to furcate. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypothamnolic (major), echinocarpic, cuperatic, and usnic acids, unknown E-1 and unidentified pigments (det. A. Johnson).

ILLUSTRATION.—Hale, 1986b, fig. 56.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—Superficially *X. thamnoloides* looks like a rather large *X. verrucigera*, a common species with stictic acid in South Africa. It is highly restricted to southeastern Namakaland. The original report of hypothamnolic acid was incorrect. The main component is hypothamnolic acid, the first occurrence of this acid in the genus. The only species in *Xanthoparmelia* with thamnolic acid remains *X. cedrus-montana*.

Xanthoparmelia tinctina

Figure 71a

Xanthoparmelia tinctina (Maheu and Gillet) Hale, 1974b:489.

Parmelia tinctina Maheu and Gillet, 1925:860. [Type collection: Bouhallaut, Morocco, [Gillet 115x] (PC, lectotype).]

Parmelia conspersa var. *isidiosa* Nylander, 1881:450. [Type collection: [Spain, Lazaro 51] (H, Nyl. herb. no. 34764, lectotype).]

Parmelia korosi-cznam Gyelnik, 1931a:156. [Type collection: Yalta, Caucasus, U.S.S.R., Lojka 87 (BP, lectotype).]

Parmelia tokajensis Gyelnik, 1931a:134. [Type collection: Mt. Tokaji, Comitat Zemplén, Hungary, Gyelnik s.n. (BP, lectotype).]

Parmelia algieriensis Bouly de Lesdain in Gyelnik, 1938a:268. [Type collection: Opunia an 78 km de la route de Mila à F. doulos, Prov. Constantine, Algeria, herb. Flagey s.n. (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

DESCRIPTION.—Thallus adnate to loosely adnate on rock, rarely on bark, 4–8 cm broad, dull yellowish green; lobes subirregular, 1.5–4 mm wide, apically round, contiguous to imbricate; upper surface continuous, emaculate, shiny, moder-
ately to densely isidiate, the isidia barrel-shaped to irregularly inflated (Figure 20i), 0.1-0.2 mm in diameter, 0.1-0.3 mm high, the tips syncorticcate to weakly epicorticate, pale, rarely weakly crumperate, becoming dense with age but little branched; medulla white; lower surface plane, black with a brown zone at the tips, moderately rhizinate, the rhizines brown to black, coarse, the tips whitish splayed when young, simple, 0.2-0.6 mm long. Pycnidia rare; conidia bifusiform, 0.5 x 5-6 μm. Apothecia rarely developed, substipitate, 2-10 mm in diameter; spores 5 x 9-10 μm.

CHEMISTRY.—Salazinic, consalazinic, norstictic (±), and usnic acids.

DISTRIBUTION.—Sweden, France, Spain, Portugal, Italy, Hungary, Roumania, Yugoslavia, Greece, Bulgaria, USSR, Algeria, Morocco, Pakistan.

COMMENTS.—This globose-isidiate lichen is well known to European lichenologists, Mahec and Gillet having mentioned the verruciform isidia in the original description. They noted a “C+ rougeatre ou legrement rose” reaction and called the species “tinctina” because of these “pigments chromogenes.” There seems to be no chemical basis for such a reaction. Gyelnik himself (1938b:29) finally realized that his P. korosi-czomae was a synonym of P. tinctina. He differentiated P. rosea by “medulla rosea,” obviously a discoloration caused by decomposition of salazinic acid.

Xanthoparmelia toluensis

Figure 71b

Xanthoparmelia toluensis Hale, 1987b:334. [Type collection: Above crater lake at Volc de Toluca, Estado Mexico, Mexico, elec. 4160 m, *Hill* and C.M. *Illis* 3202 (US, holotype; WIS, isotype).]

DESCRIPTION.—Thallus adnate to loosely adnate on mosses and humus or on rock, pulvinate, rather brittle, 6-8 cm broad, darkish yellow green; lobes sublinear, 0.8-1.5 mm wide, crowded and imbricate, lobulate-dissected at tips and center of thallus, the lobulae becoming dense, suberect, digitate-terete, 0.2-0.3 mm in diameter, black tipped; upper surface continuous, emaculate, shiny at the tips but dull with age, isidia and soredia lacking; medulla white; lower surface plane, dark brown, moderately to densely rhizinate, the rhizines brown, simple, 0.3-0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1987b, fig. 24.

DISTRIBUTION.—Mexico.

COMMENTS.—This rare high elevation lichen is near *X. cumberlandia* but has terete laciniae, a rare trait in New World species.

Xanthoparmelia toninioides

Figure 71c

Xanthoparmelia toninioides Hale, 1986b:606. [Type collection: 1 km east of Springbok on north side of Hwy R64, elev. 1100 m, Cape Province, South Africa, Grid 2917 DB, *Hale* 72086, 27 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rocks, 4-6 cm broad, light yellow green; lobes subirregular, 1-2 mm wide, short, contiguous, becoming strongly bulolate at the center; upper surface continuous, emaculate, shiny, dull, becoming densely pruinose, isidia and soredia lacking; medulla white; lower surface plane to concave, dark brown to black, moderately to densely rhizinate, the rhizines black or brown, simple, 0.3-0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 57.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The conspicuous bululate folds of the thallus are filled with a flocculent medulla. The species is rather common on granite domes in arid northern Namakaland.

Xanthoparmelia transvaalensis

Xanthoparmelia transvaalensis Hale, Nash, and Elix in Hale, 1986b:606.

[Type collection: summit of Long Tom Pass, Farm De Kuiten 205, S side of Hwy R37, elev. 2140 m, Lydenburg, Transvaal, South Africa, Grid 2430 BA, *Hale* 72038, 16 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, 6-8 cm broad, darkish yellow green; lobes subirregular to sublinear, 1-2 mm wide, imbricate with small marginal laciniae -0.5 mm wide; upper surface continuous, emaculate, shiny, densely isidiate, isidia crowded, globose, basally constricted, 0.15-0.20 mm in diameter, 0.15-0.4 mm high, the tips epicorticate, breaking off apically, mostly unbranched; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines brown or blucken, 0.5-1 mm long, simple. Pycnidia poorly developed; conidia not found. Apothecia rare, substipitate, 2-5 mm in diameter; spores poorly developed, 5 x 7-8 μm.

CHEMISTRY.—Fatty “subdecipiens” unknowns 33 and 37 (major), constipatic (trace), protoconstipatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 58.

DISTRIBUTION.—South Africa (Transvaal).

COMMENTS.—This rarely collected species has the same chemistry and black lower surface as nonisidiate *X. subnigra*, another species collected so far only in the Drakensbergs of Transvaal.

Xanthoparmelia treurensis

Figure 71d

Xanthoparmelia treurensis Hale, Nash, and Elix in Hale, 1986b:608. [Type collection: Treur River near Bourkes Luck, elev. 1200 m, Pilgrims Rest, TO]

DESCRIPTION.—Species of Xanthoparmelia: a, *X. tinctina* (Vida 918); b, *X. toluensis* (Illis 3202, holotype in US); c, *X. toninioides* (Hale 72086, holotype in US); d, *X. treurensis* (Hale 72037, holotype in US); e, *X. teeckensis* (Hale 81451, holotype in US); f, *X. tucsonensis* (Nash 6203). Scale in mm.
SMITHSONIAN CONTRIBUTIONS TO BOTANY

Xanthoparmelia tsekensis

Figure 71e

Xanthoparmelia tsekensis Hale, 1989a:562. [Type collection: On crumbling dolerite boulder along river, 5.2 km NW of Thaba Tsek Pass; Sani Pass road, elev. ca. 2900 m, Lesotho, Grid 2928 BD, Hale 81451, 7 May 1983 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate to loosely adnate on rocks, firm, 6–8 cm broad, darkish yellowish green; lobes sublinear, 2–5 mm wide, contiguous; upper surface continuous to weakly or strongly maculate in older parts, shiny, transversely cracked, moderately isidiate, the isidia tall, cylindrical (Figure 21a), 0.08–0.15 mm in diameter, 0.5–2 mm high, the tips syncorticulate, shiny, blackening, simple to densely branched; medulla white; lower surface plane, rugose, rhizines absent or very sparsely developed, black, coarse, simple, 0.3–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, cryptozystic, nortstictic (trace), connorstictic (trace), constipatic (trace), and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 59.

DISTRIBUTION.—South Africa (Transvaal), Kenya.

COMMENTS.—This species appears to be closely related to isidiate *X. albomaculata*, which has another distinct effigurate maculate. In South Africa it occurs on large sandstone outcrops in the escarpment region of Transvaal.

Xanthoparmelia tumidosasa

Figure 72a

Xanthoparmelia tumidosasa Hale, 1986b:608. [Type collection: 1 km S of Nuwens on Hwy R363, E of N7, elev. ca. 500 m, Cape Province, South Africa, Grid 3118 AB, Hale 72027, 26 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus adnate on rock, leathery, 3–6 cm broad, bright yellowish green; lobes subirregular to sublinear, 1.5–2.0 mm wide, little branched, contiguous but becoming crowded and bullate at the center; upper surface continuous, emaculate, shiny to dull, convex-bullate, isidia and soredia lacking; medulla white; lower surface plane to somewhat grooved, pale brown to darker brown, sparsely to moderately rhizinate, the rhizines brown, 0.2–0.3 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia numerous, adnate, 1.5–2.5 mm in diameter, the rim rolling inward; spores 5–6 × 9–10 μm.

CHEMISTRY.—Protocetraric and usnic acids, unidentified fatty acids.

ILLUSTRATION.—Hale, 1986b, fig. 60.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—The coriaceous, convex, adnate, almost inflated lobes distinguish this Namaqualand-western Cape karoo lichen. Morphologically identical *X. neotunidosasa* contains protocetraric acid together with 4-O-demethylfurracta acid. A third protocetraric acid-containing species, *X. subochracea*, produces skyrin in the lower medulla.

Xanthoparmelia ulcerosa

Figure 72b

Xanthoparmelia ulcerosa (Zahlbruckner) Hale, 1974b:490.

Parmelia conspersa var. *obecta* Zahlbruckner, 1924:386. [Type collection: Chihuahua, Santiago, Chile, *Espinoso* s.n. (W, lectotype).]

Quebrada de las Casas, Masafuera, Juan Fernandez, C. and J. Skottsberg.
Parmelia conspersa var. obecta Zahlbruckner, 1924:386. [Type collection: Quebrada de las Casas, Masafora, Juan Fernandez, C. and I. Skottsberg s.n. (W, lectotype; S, isotype).]

Parmelia tegulicola Zahlbruckner, 1931:85. [Type collection: Villa Alegre de Lencomilla, Chile, Espinosa s.n. (W, lectotype; BP, isotype).]

Parmelia teresiana Gyelnik, 1931b:280. [Type collection: La Mesa, near Bogotá, Colombia, Apollinaire 29 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia obecta (Zahlbruckner) Gyelnik, 1935:27.

Parmelia obecta var. tegulicola (Zahlbruckner) Gyelnik, 1935:50.

Parmelia neosoredians Gyelnik, 1938c:84. [Type collection: Los Quebrachitos, Argentina, Hosseus 109, 10 May 1934 (BP, lectotype).]

Parmelia rugulosa var. subirregularis Gyelnik, 1938c:85. [Type collection: La Estancia, Prov. Córdoba, Argentina, Hosseus 88 (BP, lectotype).]

Description.—Thallus adnate on rock, rarely on wood, 2–8 cm broad, yellowish green; lobes subirregular, 1.5–4 mm wide, apically rotund, contiguous to imbricate; upper surface continuous, emaculate, shiny, sorediate, the soralia orbicular but soon fusing into diffuse masses; medulla white; lower surface plane, pale to dark brown, moderately rhizinate, the rhizines brown, simple, 0.3–1 mm long. Pycnidia rare; conidia bifisiform, 0.5 × 5–6 μm. Apothecia rare, substipitate, 1–4 mm in diameter; spores 5–6 × 8–9 μm.

Chemistry.—Salazinic, gyrophoric (+), and usnic acids.

Distribution.—Venezuela, Colombia, Ecuador, Argentina, Chile.

Comments.—There is considerable variation in lobe width in this common South American species. It is very close to *P. microsperma*, another sorediate lichen in South America, which has a black lower surface and is more common in the northern Andes. The lectotype specimen of *Parmelia neosoredians* is a mixture of *P. ulcerosa* and stictic acid-containing *X. farinosa*.

Xanthoparmelia umtamvuna

Figure 72c

Xanthoparmelia umtamvuna Hale, 1987a:266. [Type collection: Umtamvuna Nature Reserve, elev. ca. 200 m, Natal, South Africa, Grid 3130 AA, Hale 76731, 6 Oct 1986 (US, holotype; ANUC, LD, PRE, isotypes).]

Parmelia umtamvuna (Hale) Brusse, 1989a:403.

Description.—Thallus very tightly adnate, 5–7 cm broad, dull yellowish green; lobes subirregular, 1–4 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia globose (Figure 21b), 0.1–0.2 mm in diameter, 0.1–0.3 mm high, the tips epipocrine, pale, crumpled and more or less bursting at maturity, unbranched; medulla white; lower surface plane, brown, sparingly to moderately rhizinate, the rhizines brown, simple, 0.2–0.3 mm long. Pycnidia and apothecia lacking.

Chemistry.—Stictic (major), constictic, barbitic, and usnic acids.

Illustration.—Hale, 1987a, fig. 23.

Distribution.—South Africa (Natal).

Comments.—This humd lowland species resembles *X. victoriana* externally but is distinguished by the production of barbic acid (erroneously reported as diffractaic acid in the original description). The same combination is known in *X. darlingensis* from Australia, a nonsidate species with a black lower surface.

Xanthoparmelia uncita

Figure 72d

Xanthoparmelia uncita (Brusse) Hale, 1988b:406.

Parmelia uncita Brusse, 1984:319. [Type: Seven Weeks Poort, Cape Province, South Africa, Grid 3321 AD, Brusse 3582 (PRE, holotype; LD, isotype).]

Description.—Thallus very tightly adnate on rock, appearing areolate toward the center, 4–6 cm broad, dull or darker yellowish green; lobes sublinear, 0.5–1 mm wide, contiguous to subimbricate; upper surface continuous, emaculate, shiny, deeply irregularly fissured with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines delicate, pale brown, in part translucent, simple, to 0.2 mm long. Pycnidia common; conidia cylindrical, 0.5 × 5–7 μm. Apothecia numerous, adnate, 0.6–1 mm in diameter; spores 5–6 × 8–9 μm.

Chemistry.—Fatty "subdecipiens" fatty 33 and 37 (major), constipatic (trace), protoconstipatic (trace), and usnic acids.

Illustration.—Brusse, 1984, fig. 9.

Distribution.—South Africa (Cape Province).

Comments.—This rare lichen in the Swartberg Mountains has the same chemistry as *X. subdecipiens* but is much smaller, possibly the tightly adnate morphotype.

Xanthoparmelia usitula

Xanthoparmelia usitula (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:344.

Parmelia usitula Kurokawa and Filson, 1975:46. [Type collection: Memory Cove, Cape Catastrophe, Eyre Peninsula, S.A., Australia, Filson 11834 (MEL, holotype).]

Description.—Thallus adnate on rock, 3–6 cm broad, dull yellowish green; lobes subirregular, 1–4 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked and rugulose with age, isidia and soredia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, the rhizines pale, simple, 0.2–0.5 mm long. Pycnidia common; conidia bifisiform, 0.5 × 5–6 μm. Apothecia common, substipitate, 2–7 mm in diameter; spores 5–6 × 9–10 μm.

Chemistry.—Constipatic, protoconstipatic (+), dehydroconstipatic (+), pertussaric (+), unknown fatty acid, and usnic acids.

Illustration.—Kurokawa and Filson, 1975, pl. 4: fig. 4.

Distribution.—Australia Qld, NSW, ACT, Vic, SA), New Zealand.

Comments.—This species has the same chemistry as *X. oleosa*, a smaller tightly adnate lichen in Australia and the Americas. Closely related *X. subdecipiens* from southern Africa has a different profile of fatty acids.
Xanthoparmelia vagans

FIGURE 72a

Xanthoparmelia vagans (Nylander) Hale, 1974b:490.

Endocarpon? vagans Nylander, 1858a:13. [Type collection: Chimborazo, Ecuador, Bonpland s.n. (H, Nyl. herb. no. 1730, lectotype).]

Parmelia molliscula var. *vagans* (Nylander) Nylander, 1860a:393.

Parmelia vagans (Nylander) Nylander, 1869a:293.

Parmelia subvagans Gyelnik, 1938a:292. [Type collection: Esperanza, Estado Puebla, Mexico, *Arisène 8148* (BP, lectotype; US, isolectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia taractica var. *vagans* (Nylander) Poelt y Véoda, 1981:223. [Illegitimate combination (basionym not cited).]

DESCRIPTION.—Thallus vagrant, free growing on soil, firm but often breaking apart, 2–3 cm broad, light yellowish green; lobes sublinear, 1–3 mm wide, separate to subimbricate; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface strongly convoluted but only partially inrolled, brown or darkening, especially at the tips, moderately to densely rhizinate, the rhizines brown, simple, 0.2–0.6 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Stictic, constictic, norstictic, and usnic acids.

DISTRIBUTION.—Canada, western USA, Mexico, Ecuador, Chile.

COMMENTS.—This species is closely related to the salazinic acid-containing *X. chlorochroa*, both species occurring only in the New World. *X. vagans* having a more southerly range into South America. The confusion over the incorrect use of the epithet *vagans* in Europe is discussed above under *X. camtschadalis* and *X. molliscula*.

Xanthoparmelia vendensis

FIGURE 72f

Xanthoparmelia vendensis Hale, 1987a:266. [Type collection: Tshikadeni Mine site, SSE of Masisi, elev. 500 m, Venda, South Africa, Grid 2231 CB, Hale 79138, 13 Nov 1986 (US, holotype; LD, PRE, isotype).]

DESCRIPTION.—Thallus loosely adnate to nearly free growing on sandy soil, 4–6 cm broad but coalescing into large colonies, rather fragile, light yellow green; lobes sublinear, 1–2.5 mm wide, irregularly branched and divided apically into narrow elongate laciniae, 0.2–0.4 mm wide; upper surface continuous, emaculate to weakly white-maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, shiny, pale brown, sparsely rhizinate, the rhizines brown, simple, 0.5–1 mm long. Pycnidia numerous; conidia not developed.

FIGURE 72.—Species of Xanthoparmelia: a, *X. tunidosa* (Hale 72027, holotype in US); b, *X. sicerosa* (Santesson 2907); c, *X. uniamuna* (Hale 76731, holotype in US); d, *X. uncilla* (Hale 74164); e, *X. vagans* (Hayden s.n. in FH-Tuck); f, *X. vendensis* (Hale 79138, holotype in US). Scale in mm.

Apothecia numerous, adnate, 1–4 mm in diameter; spores 5–6 x 9–10 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, and usnic acids.

ILLUSTRATION.—Hale, 1987a, fig. 24.

DISTRIBUTION.—South Africa (Venda).

COMMENTS.—The only other terricolous species with fumarprotocetraric acid, *X. leonora*, has a firmer thallus and moderately convoluted lobes. *Xanthoparmelia phaeophana*, which does not usually grow on soil, is much firmer with a strongly white-maculate upper surface. *Xanthoparmelia vendensis* is so far confined to sandy soils in the distinctive *Androscarchys* veld community of Venda and northern Transvaal.

Xanthoparmelia verdonii

FIGURE 73a

Xanthoparmelia verdonii Elix and Johnston in Elix, Johnston, and Armstrong, 1986:346. [Type collection: 19 km E of Cann River township, Alfred National Park, Australia, Elix 5252 (CBG, holotype).]

DESCRIPTION.—Thallus adnate on rock, 4–7 cm broad, firm, yellowish green but darkening at the center; lobes subirregular to sublinear, 1–2.5 mm wide, black-rimmed, contiguous to imbricate; upper surface continuous, emaculate, shiny, becoming densely isidiate, the isidia globose or subcylindrical to irregularly inflated (Figure 21c), 0.08–0.15 mm in diameter, to 0.3 mm high, coarse, the tips syncorticate, black, simple to branched, at least in part erumpent and becoming punctulate; medulla white; lower surface plane, black, sparsely to moderately rhizinate, the rhizines black, simple, 0.4–0.8 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Norlobaridone, isoxodin, and usnic acid, scabrosin 4,4'-diacetate (±), scabrosin 4-acetate-4'-butyrate (±), scabrosin 4-acetate-4'-hexanoate (±), scabrosin 4,4'-dibutyrate (±).

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 37.

DISTRIBUTION.—Australia (NSW, Vic, Tas), New Zealand.

COMMENTS.—This is a probable morph of *X. scabrosa* with a black lower surface. It is extremely rare in southeastern Australia and New Zealand.

Xanthoparmelia verecunda, new combination

Parmelia verecunda Brussee, 1988:538. [Type collection: Oosteniqua Pass, 10 km from George to Oudthoom, Cape Province, South Africa, Brussee 4790 (PRE, holotype (not seen); BM, COLO, isotypes).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, very fragile, 1–3 cm broad, dark yellowish green; lobes sublinear, 0.5–0.8 mm wide, irregularly branched, imbricate, short laciniate with age, in part black-rimmed; upper surface, continuous but the cortex fragile, easily breaking away to reveal the pigmented medulla, emaculate, shiny, finely reticulate-foveolate with age, soredia and isidia lacking;
medulla deep orange-red throughout; lower surface plane, black, shiny, sparsely rhizinate, the rhizines black, simple. 0.2–0.3 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Schencikiana pigments, secalonic acid complex, and usnic acid.

ILLUSTRATION.—Brusse, 1988, fig. 8.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—This conspicuously pigmented species has the same chemical profile as X. endochromatica, a rare Table Mountain endemic with strongly black-rimmed, opuntioid-constricted lobes, and an unknown substance near glyrophoric acid. It is known only from the type collection.

Xanthoparmelia verruciformis

Xanthoparmelia verruciformis Elix and Johnston in Elix, Johnston, and Armstrong, 1986:348. [Type collection: Bolla Bollana Copper Smelter, 7.5 km NW of Arkaroola, Flinders Ranges, S.A., Australia, Elix 18080b, 31 Oct 1984 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, firm, 3–6 cm in diameter, light yellow green; lobes subirregular, 1.5–2.5 mm wide, contiguous to imbricate, crowded, becoming rugulose and transversely cracked toward the center, soredia and isidia lacking; medulla white; lower surface plane, pale brown, moderately rhizinate, rhizines pale brown, slender, unbranched, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Protocetraric and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 38.

DISTRIBUTION.—Australia (SA), South Africa (Transvaal).

COMMENTS.—While known only from a single small specimen in Australia, *X. verruciformis* is much more common in southern Africa. Of the 12 protocetraric acid-containing species lacking isidia and having a pale lower surface, only this one occurs in Australia, all the others being confined to southern Africa, where the closest relative is pigmented *X. dichromatica*.

Xanthoparmelia verrucigera, new combination

Figure 73b

Parmelia verrucigera Nylander, 1872:426. [Type collection: [Fougère], France, Delize s.n. (H-Nyl herb. no. 34780, lectotype).]

Parmelia lusitana Nylander, 1881:449. [Type collection: Portugal, Newton s.n. (H, Nyl. herb. no. 34775, lectotype).]

Parmelia tarpatakenis Gyelnik, 1930b:32. [Type collection: Magas-Tátra, Comit. Szepes, Hungary, Tinkó 3058 (BP, lectotype).]

Parmelia conspersa var. lodoxes f. lusitana (Nylander) Boistel, 1903:64.

Parmelia conspersa var. verrucigera (Nylander) Boistel, 1903:64.

Parmelia servissiana Gyelnik in Servit, 1931:273. [Type collection: Hercegnowi, Dalmatia, Servit s.n. (BP, lectotype).]

Parmelia pulvinaris var. mediterranea Gyelnik, 1931b:277. [Type collection: Hercegnowi, Yugoslavia, Servit s.n. (BP, lectotype).]

Parmelia conspersa var. verrucigera f. lusitana (Nylander) Kušan, 1932:30.

Parmelia isidigera f. ligustica Gyelnik, 1938a:281. [Type collection: Foiche, Ligustica, Italy, Sbarbaro 39 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed).]

Parmelia pseudosverrupsiana f. exornata Gyelnik, 1938a:287. [Type collection: Herkulasfürö, Roumania, Gyelnik s.n. (BP, lectotype).]

DESCRIPTION.—Thallus adnate on rock, 5–10 cm broad, yellowish green; lobes subirregular, 1–3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, moderately to densely isidiate, the isidia cylindrical (Figure 21d), 0.1–0.2 mm in diameter, 0.2–1 mm high, the tips syncorticate, darkening, sparsely branched; medulla white; lower surface plane, black, shiny, moderately rhizinate, the rhizines black, simple, 0.3–0.6 mm long. Pycnidia rare; conidia bifusiform, 0.5 × 6–7 μm. Apothecia not commonly developed, subuplicate, 2–7 mm in diameter, the rim isidiate; spores 5–6 × 7–9 μm.

CHEMISTRY.—Stictic, constictic, cryptocystic, menegazziac, and usnic acids and an unknown yellow spot below norstictic acid (lusitana unknown).

DISTRIBUTION.—Roumania, Hungary, Spain, Portugal, France, Italy, Kenya, South Africa (Transvaal, Natal, OFS, Transkei, Ciskei, Cape Province), Lesotho.

COMMENTS.—All of the type specimens listed above contain stictic acid with the lusitana unknown and lack norstictic acid. This is the prime difference from *X. conspersa*, a more northern species with norstictic acid (K+ yellow turning red) along with the stictic acid series (K+ persistent yellow). Many early authors, including not only Nylander (1881:449) but also Harmand (1909) and Gyelnik (1938a:271), were in fact able to separate *Parmelia isidigera* (= *X. conspersa*) and *P. verrucigera* (as *P. lusitana*) with very careful medullary color tests. Asahina’s (1959) report from Japan is not correct since he demonstrated norstictic acid in the specimens. Nylander himself (1881:449) acknowledged that his *P. lusitana* was very close to this species and some authors later listed *P. verrucigera* as a synonym of *P. lusitana* (e.g., Olivier, 1894:58), without realizing that *P. verrucigera* was the older name.

The type of *P. verrucigera* is unfortunately very scrappy with somewhat globose, apparently malformed isidia, rarely seen in other lusitana unknown-containing specimens. It is mixed with a specimen of typical *X. conspersa*. The type of *Parmelia lusitana* has normal cylindrical isidia, and I am synonymizing it here because of the unusual chemistry.

Xanthoparmelia versicolor

Xanthoparmelia versicolor Hale, 1974b:490.

Parmelia versicolor Müller Argoviensis, 1881:506. [Type collection: "Nova
Xanthoparmelia cylindrica medulla high, cm moderately resembles (diffractaic plane, age, lacking. rim; Parmelia sublinear, Whipstick, isotype).

DESCRIPTION.—Thallus loosely adnate on soil, more or less pulvinate, 4–15 cm broad, light yellowish green; lobes sublinear, 1–3 mm wide, contiguous to imbricate, becoming laciniate toward the center with age, the laciniae 0.5–1 mm wide, weakly convoluted and canaliculate with a yellowish rim; upper surface continuous, emaculate, shiny, rugose with age, isidia and soreidia lacking; medulla white; lower surface plane, dark brown to black in the center, sparingly to moderately rhizinate, the rhizines black, simple, 0.5–1 mm long. Pycnidia lacking. Apothecia very rare, substipitate, 1–4 mm in diameter; spores 4–7 × 7–9 μm.

CHEMISTRY.—Salazinic (major), norstictic (trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 39.

DISTRIBUTION.—Australia (Qld, NSW, Vic, SA, WA).

COMMENTS.—This species occurs in arid shrubland such as the mallee scrub across southern Australia. Externally it resembles X. terrestris, which is pale below and contains norstictic acid as the main component.

Xanthoparmelia villamiliana

Xanthoparmelia villamiliana Nash, Elix, and Johnston, 1987:289. [Type collection: 1 km west of Cacheuta along route 7, Province of Mendoza, Argentina, Nash 23907 (ASU, holotype; ANUC, BAF, US, isotypes).]

DESCRIPTION.—Thallus adnate on soil, over mosses on soil, or rarely on rock, 3–5 cm broad, yellow green; lobes subirregular to sublinear, 0.8–2 mm wide, imbricate, the apices rounded or shallowly notched; upper surface shiny, rugose, moderately to densely isidiate, the isidia cylindrical (Figure 21e), 0.06–0.1 mm in diameter, to 0.8 mm high, the tips syncorticate, dark, simple to coralloid-branched; medulla white; lower surface plane, black, shiny, sparingly to moderately rhizinate, the rhizines black, 0.5–1 mm long, unbranched. Pycnidia and apothecia lacking.

CHEMISTRY.—Barbatic, 4-0-demethylbarbatic, 3-α-hydroxybarbatic (trace), and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 40.

DISTRIBUTION.—Argentina.

COMMENTS.—Known only from the type collection, X. victoriae resembles X. neovincentia (norstictic acid) and X. nashii (differatacit acid), both Australasian species.

Xanthoparmelia viridis

Xanthoparmelia viridis Hale, 1986b:609. [Type collection: Karoo Botanical Garden, Worcester, elev. 300 m, Cape Province, South Africa, Grid 3319 CC; Hale 74023, 20 Jan 1986 (US, holotype; LD, PFE, isotypes).]
DESCRIPTION.—Thallus adnate to loosely adnate on rock, 6–10 cm broad, greenish yellow; lobes subirregular to sublinear, 1.2–2.5 mm wide, imbricate, irregularly laciniate; upper surface faintly to distinctly maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, brown but blackening at the center, uniformly moderately rhizinate, the rhizines black, simple, 1–1.5 mm long. Pycnidia common; conidia bifusiform, 0.5 × 6–7 μm. Apothecia numerous, substipitate, 2–4 mm in diameter; spores 5–7 × 9–10 μm.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 61.

DISTRIBUTION.—South Africa (Cape Province).

COMMENTS.—X. viridis, known only from the Karoo Botanical Garden, is related to fumarprotocetraric acid-containing X. phaeophana, a common southern African lichen which is brown below. It is also related to X. synestia, a more widely distributed species in South Africa with salazinic acid.

Xanthoparmelia walteri

Xanthoparmelia walteri Knox in Knox and Brusse, 1983:157. [Type collection: Namibwaste 10–20 km N of Swakopmund, SWA, Namibia, Moisel 5168 (US, isotype).]

DESCRIPTION.—Thallus loosely adnate on pebbles, more rarely free growing on soil, firm, 3–6 cm broad, dull yellowish green; lobes sublinear to linear, 0.5–1.5 mm wide, subascend- and curling up, separate to loosely imbricate; upper surface to weakly to distinctly white-maculate, shiny, transversely cracked and rugose with age, isidia and soredia lacking; medulla white; lower surface plane, black but sometimes turning dark brown at the center with age, strongly reticulately rugose, very sparsely rhizinate, the rhizines black, coarse, simple, 0.1–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Salazinic, norstictic (étrace), and usnic acids.

ILLUSTRATION.—Knox and Brusse, 1983, fig. 11.

DISTRIBUTION.—SWA/Namibia.

COMMENTS.—This is the commonest Xanthoparmelia in the coastal fog zone of Namibia, forming a desert lichen cover many kilometers in extent and imparting a blackish tint to the landscape. It is usually firmly attached to pebbles but the tips are free and ascending. A variant species in Namaqualand, X. hyporhytida, is larger on the average and produces the chalybeicains unknown in addition to salazinic acid.

Xanthoparmelia weberi

Xanthoparmelia weberi (Hale) Hale, 1974b:490.

DESCRIPTION.—Thallus adnate on rock, rarely on lignum, 3–6 cm broad, light yellowish green; lobes subirregular, 2–3 mm wide, contiguous to imbricate; upper surface continuous, maculate, shiny, moderately to densely rhizinate, the isidia initially globose, cylindrical to irregularly inflated at maturity (Figure 21f), 0.1–0.2 mm in diameter, 0.1–0.8 mm high, the tips epicorticate, dull brown, very weakly erumpent, becoming branched with age; medulla white; lower surface plane, pale brown or rarely darkening, moderately rhizinate, the rhizines pale brown, simple, 0.3–0.5 mm long. Pycnidia rarely developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia rare, substipitate, 2–4 mm in diameter; spores 5–6 × 10–12 μm.

CHEMISTRY.—Hypoprotocetraric, 4-O-demethylnotatic, and usnic acids.

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 41.

DISTRIBUTION.—Western USA, Mexico, Australia (SA, NT, WA), South Africa (Transvaal, Natal), SWA/Namibia, Kenya, Uganda.

COMMENTS.—The range of variation in this common species is not yet fully understood. Australian specimens are rather tightly adnate whereas the American populations are only moderately adnate and cannot be told from X. mexicana without a chemical test. The isidia are extremely variable in size, with some specimens appearing to be erumpent, others not at all. SEM photographs show most isidia to be more or less epicorticate. In Africa it can be confused with X. neoweberi, a smaller lichen with skyrin and a darker brown lower surface.

Xanthoparmelia wesselsii

Xanthoparmelia wesselsii Hale, 1986b:609. [Type collection: summit of Long Tom Pass on S side of Hwy R37, Farm De Kuiten, Lydenburg, elev. 2140 m, Transvaal, South Africa, Grid 2430 BA, Hale 72043, 16 Jan 1986 (US, holotype; LD, PRE, isotypes).]

DESCRIPTION.—Thallus loosely adnate on soil and humus, easily breaking apart, 4–7 cm broad; lobes sublinear, 0.5–1.5 mm wide, elongate and sometimes weakly constricted, more or less weakly convoluted, dichotomously branched, separate to divaricately imbricate, the ultimate branches becoming terete, subascending; upper surface continuous, maculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, shiny, light to darker brown in flaring parts of lobes, interrupted by yellowish constricted parts, sparsely rhizinate, the rhizines brown to dark brown, simple, 0.5–1 mm long. Pycnidia not well developed; conidia not seen. Apothecia adnate, 3–4 mm in diameter; spores 5–6 × 9–10 μm.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Hale, 1986b, fig. 62.
DISTRIBUTION.—South Africa (Transvaal).

COMMENTS.—This soil-inhabiting lichen from higher elevations in the Drakensbergs escarpment of Transvaal has a lower surface consisting of flattened, flaring light brown parts a few mm long and intervening constricted areas concolorous with the upper surface. Another terricolous lichen in the Drakensbergs, X. terricola, has broader, more appressed lobes.

Xanthoparmelia wilsonii

Figure 74b

Xanthoparmelia wilsonii (Kurokawa and Filson) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:355

DESCRIPTION.—Thallus loosely adnate to free growing on soil, firm, forming rosettes 2–3 cm broad, becoming subpulvinate, light yellowish green; lobes sublinear, 0.6–2 mm wide, dichotomously branched, separate to subimbricate, subascending; upper surface white maculate, shiny, isidia and soredia lacking; medulla white; lower surface canaliculate, pale brown or concolorous with the upper surface with a raised yellowish rim, very sparsely rhizinate, the rhizines, simple to branched, blackening, simple to furcate, 0.5–1 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Fumarprotocetraric, succinprotocetraric, protocetraric (±trace), physodalic (±trace), and usnic acids.

ILLUSTRATION.—Filson, 1982, fig. 20.

DISTRIBUTION.—Australia (Qld, NSW, SA, WA, Tas).

COMMENTS.—This is a member of the X. amphixantha group, distinguished by the presence of fumarprotocetraric acid and broad maculate lobes that are concolorous below. A very closely related species with the same chemistry, X. repians, is more distinctly rhizinate and has a pale brown lower surface.

Xanthoparmelia wisangerensis

Figure 74c

Xanthoparmelia wisangerensis Elix and Johnston, 1987:368. [Type collection: Wisangier Hills Homestead, 7 km WSW of Emu Bay, Kangaroo Island, South Australia, Australia, Elix 19648, 27 Oct 1985 (CBG, holotype; MEL, isotype).]

DESCRIPTION.—Thallus adnate on rock, 3–6 cm broad, light yellowish green; lobes subimbricate to sublinear, 1–2 mm wide, contiguous to imbricate, black-rimmed toward the tips, developing linear-elongate, subdichotomously divided, subterete, revolute or canaliculate secondary laciniae toward the center, the laciniae 0.2–0.4 mm wide; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower surface plane, pale tan but darkening toward the tips, sparsely to moderately rhizinate, the rhizines brown, slender, simple, 0.2–0.5 mm long. Pycnidia common; conidia subbifusiform, 0.5 × 5–6 μm. Apothecia common, subtipitate, 1–3 mm in diameter; spores 4–6 × 7–10 μm.

CHEMISTRY.—Norstictic, salazinic, conosorctic, consalazinic, and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 10.

DISTRIBUTION.—Australia (SA).

COMMENTS.—This species is known only from the type locality. It is superficially close to the North American X. californica, which lacks secondary laciniae.

Xanthoparmelia worcesteri

Figure 74d

Xanthoparmelia worcesteri (Steiner and Zahlbruckner) Hale, 1974b:490.

Parmelia worcesteri Steiner and Zahlbruckner in Zahlbruckner, 1926:511. [Type collection: Worcester, Cape Prov., South Africa, Brunnhaler s.n. (WU, lectotype; W, isolectotype).]

DESCRIPTION.—Thallus very tightly adnate, appearing areolate in the center, 3–8 cm broad, light yellowish green; lobes sublinear, 0.5–1 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, rugose at the center, isidia and soredia lacking; medulla white; lower surface plane, pale brown, sparsely to moderately rhizinate, the rhizines pale brown, simple, 0.2–0.4 mm long. Pycnidia common; conidia bifusiform, 0.5 × 5–6 μm. Apothecia common, adnate, 1–4 mm in diameter; spores 6 × 9–10 μm.

FIGURE 74.—Species of Xanthoparmelia: a, X. wilsonii (isotype (?) in NY); b, X. wilsonii (Bratt 69/449); c, X. wisangerensis (Elix 19648, holotype in CBG); d, X. worcesteri (Hale 74400); e, X. wyomingica (Shushan 4716); f, X. xanthomelaena (Hale 66593). Scale in mm.
CHMISTRY.—Lecanoric and usnic acids.

DISTRIBUTION.—South Africa (Cape Province), SWA/Namibia.

COMMENTS.—This is the most typical and widespread of the tightly adnate karoo lichens in southern Africa. Gyelnik (1935:53) examined the type, noting the C+ red medullary reaction, which Zahlbruckner had used as a diagnostic character. Zahlbruckner also compared it with his own X. brunnthaleri, which contains scabrosin derivatives and is C-.

Two other species in this group, X. applicata (barbatic acid) and X. sigillata (ernvic acid), also occur in the Great Karoo and are distinguished by chemistry.

Xanthoparmelia wrightiana

Xanthoparmelia wrightiana Nash, Elix, and Johnston, 1987:290. [Type collection: Sierra de la Ventana, Partido Tornquist, Province of Buenos Aires, Argentina, Nash 23878 (ASU, holotype; ANUC, isotype).]

DESCRIPTION.—Thallus adnate on rocks, up to 6 cm broad, yellow green; lobes subirregular, 1.5-3 mm wide, separate to imbricate; upper surface continuous, emacuate, shiny, moderately to densely isidiate, the isidia globose or short-cylindrical at first, 0.1-0.2 mm in diameter, to 0.7 mm high, in part crumbling and subcordate at maturity, unbranched; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, stout, simple, 0.3-0.5 mm long. Pycnidia lacking. Apothecia rare, to 4 mm in diameter; spores 4-6 x 8-10 μm.

CHMISTRY.—Stictic, constictic, norstictic, cryptostictic (trace), hypostictic (trace), connorstictic (trace), and usnic acids.

ILLUSTRATION.—Nash, Elix, and Johnston, 1987, fig. 6.

DISTRIBUTION.—Venezuela, Argentina.

COMMENTS.—A related species in the Andes Mountains and Australia, X. cordilleriana, differs in having salazinic acid and a pale brown to brown lower cortex. The Mexican endemic X. amableana has dark-tipped, branched isidia.

Xanthoparmelia wyomingica

Fig 74e

Xanthoparmelia wyomingica (Gyelnik) Hale, 1974b:490.

Parmelia wyomingica (Gyelnik) Hale, 1971a:344.

Parmelia digitulata var. wyomingica Gyelnik, 1938a:277. [Type collection: Soldiers Park, N fork of Clear Creek, Big Horn Mountains, Wyoming, USA, Williams, Decades N.A. Lich. 316 (BP, lectotype; FH, US, YU, isolecotypes).]

Parmelia austroafricana f. wyomingica (Gyelnik) Gyelnik, 1938b:22.

DESCRIPTION.—Thallus loosely adnate to free growing on pebbles and soil, firm, forming intact rosettes 4-8 cm broad, yellowish green; lobes sublinear, 1-3 mm wide, more or less convoluted, separate to subimbricate, laciniate with age, the laciniae rarely suberete; upper surface continuous, emaculate, shiny, isidia and soredia lacking; medulla white; lower plane, pale to dark brown, moderately to densely rhizinate, the rhizines brown, simple, 0.2-1 mm long, projecting out below. Pycnidia common; conidia bifusiform, 0.5 x 5-6 μm. Apothecia common, substipitate, 1-3 mm in diameter; spores 4 x 8 μm.

CHMISTRY.—Salazinic, consalazinic (+), and usnic acids.

ILLUSTRATION.—Egan, 1975, fig. 2.

DISTRIBUTION.—Western North America.

COMMENTS.—This terricolous lichen is restricted to exposed habitats at high elevation (above 3000 m) and alpine areas in the Rocky Mountains, well above the open, sandy grazing land where closely related X. chlorochroa is found.

Xanthoparmelia xanthomelaena

Fig 74f

Parmelia xanthomelaena ("xanthomelaena"); spelling corrected by Vainio (1900:6) Müller Argoviensis, 1883:48. [Type collection: Grampian Mountains, Australia, Sullivan 28 (G, lectotype).]

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, the central part appearing areolate, 4-5 cm broad, dull yellowish green, brownish and darkening with age at the center; lobes sublinear, 0.2-0.8 mm wide, irregularly dichotomous branched, the tips sometimes ascending, contiguous to subimbricate, more or less black rimmed, sublaciniate with age; upper surface continuous, emaculate, shiny, transversely cracked with age, isidia and soredia lacking; medulla white; lower surface plane, black, shiny, sparsely to moderately rhizinate, the rhizines black, rather coarse, simple, 0.2-0.3 mm long. Pycnidia rare; conidia cylindrical, 0.5 x 7-9 μm. Apothecia adnate, 0.5-1.5 mm in diameter; spores 5-6 x 8-10 μm.

CHMISTRY.—Stictic, constictic, norstictic, and usnic acids.

ILLUSTRATION.—Hale, 1976a, fig. 18c. (as Pseudoparmelia xanthomelaena).

DISTRIBUTION.—Australia (NSW, Vic), New Zealand, South Africa (Cape Province).

COMMENTS.—In his original description Müller described the center of the thallus as "subgranulato-areolatus" and this is indeed a typical centrally areolate species. On the basis of microcrystal tests I had earlier assigned this species to Pseudoparmelia (Hale, 1974a, 1976a), although Vainio (1900:6) noted its resemblance to X. mougeotii. Recent analyses with TLC and HPLC by Dr. J. A. Elix, however, indicate the presence of usnic acid, not atranorin, in the cortex. This rather rare species is most closely related to X. tegeta, which is more loosely adnate, may form compact mats, and occurs in Australia and South Africa. Some specimens from South Africa have been redetermined as X. greytonensis, which has delicate
rhizines, a generally lighter yellow-green thallus, and paler-rimmed lobes.

Xanthoparmelia xanthomelanoides

Figure 75a

Xanthoparmelia xanthomelanoides Elix and Johnston, 1988b:363. [Type collection: 6.5 km W of Springer, High Eden road, Mt. Lofty Ranges, South Australia, Australia, Elix 2252, 20 May 1976 (CBG, holotype; MEL, isotype).]

DESCRIPTION.—Thallus very tightly adnate to tightly adnate on rock, 2–3 cm broad, yellow-green but darkening with age; lobes sublinear, 0.5–1 mm wide, dichotomously branched, subimbricate; upper surface continuous, emaculate, shiny, transversely cracked with age, soredia and isidia lacking; medulla white; lower surface plane, pale brown to brown, sparsely rhizinate, the rhizines pale tan to brown, simple, 0.1–0.15 mm long. Pycnidia numerous; conidia bifusiform, 0.5 × 5–9 μm. Apothecia subtisulate, 1–1.5 mm in diameter; spores 6–7 × 8–9 μm.

CHEMISTRY.—Stictic (major), constictic, norstictic (minor), crypsostictic (trace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1988b, fig. 10.

DISTRIBUTION.—Australia (SA, WA).

COMMENTS.—Externally similar *X. xanthomelaena* has the same chemistry but the lower surface is black.

Xanthoparmelia xanthosorediata

Figure 75b

Xanthoparmelia xanthosorediata (Elix) Elix and Johnston in Elix, Johnston, and Armstrong, 1986:357.

Parmelia xanthosorediata Elix, 1981:373. [Type collection: Kowen Forest, 16 km E of Canberra, A.C.T., Australia, Elix 1830 (MEL, holotype; CBG, isotype).]

DESCRIPTION.—Thallus tightly adnate to adnate on rock, 3–5 cm broad, yellowish green; lobes subirregular, 1–1.5 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, transversely cracked, sorediate, the soredia powdery-granular, soralia orbicular, becoming diffuse; medulla white; lower surface plane, pale brown to chestnut brown, moderately rhizinate, the rhizines brown, simple, 0.2–0.4 mm long. Pycnidia lacking. Apothecia rare, subtisulate, 1–3 mm in diameter; spores 6 × 8 μm.

CHEMISTRY.—Norlobaridine, loxodin, conorlobaridine, conroxodin, constipatic, protoconstipatic, and usnic acids.

ILLUSTRATION.—Elix, 1981, fig. 18.

DISTRIBUTION.—Australia (NSW, ACT, WA).

COMMENTS.—The distinguishing features of this rare lichen are soredia and the production of conroxodin and conorlobaridine as well as loxodin and norlobaridine. *Xanthoparmelia filarszkyana* is a possible nonsorediate morph.

Xanthoparmelia xerophilica

Figure 75c

DESCRIPTION.—Thallus very tightly adnate on rock, 1–3 cm broad, the center appearing areolate, dark yellowish green with age; lobes sublinear, 0.2–0.5 mm wide, irregularly branched and short, contiguous to subimbricate, the tips brownish; upper surface continuous, emaculate, shiny, moderately isidiate, the isidia papillate to cylindrical (Figure 21g), 0.06–0.08 mm in diameter, 0.1–0.15 mm high, the tips syncorticate, black, unbranched to sparingly branched; medulla white; lower surface plane, black, sparsely rhizinate, the rhizines black, 0.1–0.15 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Barbatic (major), protoconstipatic, 4-O-demethylbarbatic, and usnic acids, atranorin (±trace).

ILLUSTRATION.—Elix, Johnston, and Armstrong, 1986, fig. 42.

DISTRIBUTION.—Australia (SA).

COMMENTS.—This inconspicuous lichen is externally similar to the South African *X. keradensis* with stenosporonic acid. Two other Australasian species, stictic acid-containing *X. mougetotina* (black below) and norlobaridine-containing *X. exilima* (pale below) have the same external appearance.

Xanthoparmelia xizangensis

Figure 75d

Parmelia tinctina var. xizangensis Wei, 1983:223. [Type collection: Changdu, Xizang (Tibet), China, Zong et al., 218-1, 1 Jun 1976 (HMAS, holotype).]

DESCRIPTION.—Thallus loosely adnate on rock, rather brittle, 4–6 cm broad, darkish yellow green; lobes sublinear, 0.8–1.5 mm wide, dichotomously branched, loosely divate-imbricate, brown-rimmed at the tips; upper surface uniformly white maculate, shiny, moderately isidiate, the isidia cylindrical (Figure 21i), 0.15–0.2 mm in diameter. to 0.8 mm high, the tips syncorticate, pale to brownish, sparsely branched; medulla white; lower surface plane, dark brown and weakly yellow-rimmed at the tips, blackening at the center, sparsely to moderately rhizinate, the rhizines black, simple, 0.3–0.6 mm long. Pycnidia well developed; conidia bifusiform, 0.5 × 4–5 μm. Apothecia lacking.

CHEMISTRY.—Salazinic, consalazinic, and usnic acids.

ILLUSTRATION.—Wei, 1983 fig. 1.

DISTRIBUTION.—China (Tibet).

COMMENTS.—This is one of the few white-maculate species in the genus with isidia. It is known only from the type collected in Tibet. While superficially similar, *X. tinctina* has a continuous upper surface and globose isidia.
Xanthoparmelia yowaensis

Figure 75e

Xanthoparmelia yowaensis Elix and Johnston, 1987:369. [Type collection: The Bluff, Yowa Opal Field, near Cunnamulla, Queensland, Australia, Ballingall 1668B, 2 Sep 1984 (CBG, holotype).]

DESCRIPTION.—Thallus adnate to loosely on rock, 3–6 cm broad, yellowish green; lobes subirregular to sublinear, 1.5–3 mm wide, crowded, short and irregularly branched, contiguous to imbricate, black-rimmed toward the tips; upper surface effigurate maculate, shiny to opaque, distinctly rugulose and wrinkled with age, irregularly cracked, isidia and soredia lacking; medulla white; lower surface plane, black, rugulose, sparsely to moderately rhizinate, the rhizines black, simple, robust, 0.3–0.5 mm long. Pycnidia poorly developed; conidia bifusiform, 0.5 × 5–6 μm. Apothecia lacking.

CHEMISTRY.—Fumarprotocetraric (major), succinprotocetraric, protocetraric (trace), lobariaric (trace), and usnic acids.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 11.

DISTRIBUTION.—Australia (Qld, WA).

COMMENTS.—The effigurate-maculate surface relates this species to the *X. hypoleia* group, especially Australian *X. pseudohypoleia*, but the thallus is adnate and the lobes are relatively short and subirregular. A parallel case is adnate, effigurate-maculate *X. karoo*, a hypoprotocetraric acid-containing species from South Africa, and loosely adnate, elongate lobed *X. hypoprotocetrarica*. It is known only from the type locality and a collection from Western Australia.

Xanthoparmelia zonata

Figure 75f

Xanthoparmelia zonata Elix and Johnston, 1987:369. [Type collection: Castles area, 14 km S of Yowa Opal Field, W of Cunnamulla, Queensland, Australia, Ballingall 1746A, 25 Sep 1984 (CBG, holotype).]

DESCRIPTION.—Thallus tightly adnate on rock, 1–3 cm broad, yellowish green but darkening with age; lobes subirregular, 0.5–1.3 mm wide, contiguous to imbricate; upper surface continuous, emaculate, shiny, becoming rugulose and areolate with age, transversely cracked, moderately isidiate, the isidia globose and coarse, becoming short cylindrical (Figure 21I), 0.15–0.2 mm in diameter, 0.1–1 mm high, the tips weakly epicorticate, grayish or darkening, sparsely branched; upper medulla white, lower medulla ochre in part; lower surface plane, pale to light brown or darker toward the tips, shiny, sparsely to moderately rhizinate, the rhizines pale to light brown, simple, 0.2–0.5 mm long. Pycnidia and apothecia lacking.

CHEMISTRY.—Lobaric (major), constipastic, protoconstipastic, colensoic (trace), and usnic acids, scabrosin 4-acetate-4'butyrate, scabrosin 4-acetate-4'hexanolate, scabrosin 4,4'-dibutyrate, scabrosin 4,4'-diacetate (trace), and skyrin.

ILLUSTRATION.—Elix and Johnston, 1987, fig. 12.

DISTRIBUTION.—Australia (Qld).

COMMENTS.—This species, known only from the type locality, is unique in having lobaric acid as the major component. It is morphologically similar to *X. ballingalliana* and *X. immutata*, both of which contain scabrosin derivatives.

List of Nomina Inquirenda and Excluded or Untypified Names

The following names have been incorrectly assigned to "Xanthoparmelia" or are not typifiable because the type specimens could not be found.

- **Imbricaria cenfugua** (L.) Koerber, 1855:82.
 - See entry under *Lichen cenfugua*.
- **Imbricaria incurva** (Persoon) Koerber, 1855:82.
 - See entry under *Lichen incurva*.
- **Imbricaria subconspersa** (Nylander) Jatta, 1902:470.
 - See entry under *Parmelia subconspersa*.
- **Lichen hottenottus** Acharias, 1798:155.
 - Type collection.—Cape of Good Hope, South Africa, Thunberg s.n. (UPS, lectotype). This is now recognized as *Xanthomaculina hottenottensis* (Acharius) Hale (Hale, 1985b).
- **Lichen cenfugus** L., 1753:1142.
 - Type collection.—Sweden (LINN, Linn. herb. 127358, lectotype).
 - This is *Arctoparmelia cenfugia* (L.) Hale (Hale, 1986a).
 - **Lichen incurva** Persoon, 1794:24.
 - Type collection.—[Sudeten, Germany, s.c.] (L., neotype). This is *Arctoparmelia incurva* (Persoon) Hale (Hale, 1986a).
- **Lichen ceranoides** Lamarek, 1789:487.
 - Type collection.—Cape of Good Hope, South Africa, Sommerat s.n. (G, lectotype). This is a later homonym of *Lichen ceranoides* Hedwig (Bryopyhta) and a synonym of *Xanthomaculina hottenottensis* (Acharius) Hale (Hale, 1985b).
- **Lichen multifidus** Dickson, 1793, pl. 16, table 9, fig. 7.
 - Type collection.—England, Pl. Crypt. Fas. 16 (BM, lectotype). This is a synonym of *Arctoparmelia cenfugia* (L.) Hale (Hale, 1986a).
- **Omphalotus convolutus** Hue, 1900:111.
 - Type collection.—Walwich Bay, Africa, Duquesque s.n. (PC, lectotype). This is *Xanthomaculina convoluta* (Hue) Hale (Hale, 1985b).
- **Omphalotus packyhallum** (Sprague) Dodge, 1959:190.
 - See entry under *Parmelia pachyhallula*.
- **Omphalotus stictellum** (Massalongo) Dodge, 1959:186.
 - See entry under *Parmelia stictella*.
- **Parmelia adhaerens** Nylander in Cronbnie, 1876a:19 and 1876b:168.
 - Type collection.—Table Mountain, Cape of Good Hope, South Africa, Eaton s.n. (BM, lectotype; H-Nyl, herb. no. 34823, isotype). This species is now recognized as *Karowisia adhaerens* (Nylander) Hale (Hale, 1989c).
- **Parmelia adpressa** var. *stenophylloides* Müller Argoviensis, 1888b:56.
 - Type collection.—Paraguay, Balança s.n. (G). This is a species of *Xanthoparmelia* but too fragmentary to characterize, except for the presence of steric acid.
- **Parmelia aleutica** Nylander, 1875:103.
 - Type collection.—[Chukotka], Finland, Norlín s.n. (H-Nylander herb. no. 34674, lectotype). This is a member of *Arctoparmelia: A. aleuritica* (Nylander) Hale (Hale, 1986a).

This is Flavoparmelia gerlachii (Zahlbruckner) Hale (Hale, 1986e).

Parmelia benguellensis (Vainio) Dodge, 1959:70.

See entry under Parmelia subconsppara var. benguellensis Vainio.

Parmelia bipinidens Dodge, 1959:59.

Type Collection.—Bipinde, Cameroon, Zener 4053 p.p. (BM, holotype).

This belongs in the genus *Pseudoparmelia* and is a synonym of *P. sphaerospora* (Nylander) Hale (Hale, 1976a).

Parmelia birulae Elenkin, 1906:36.

Type Collection.—Jenisseisk, Zaria Station, Siberia, USSR, Birula s.n. (not seen).

This is a synonym of *Arctoparmelia separata* (T. Fries) Hale (Hale, 1986a).

Parmelia birulae var. angustior Elenkin, 1909:19.

Type Collection.—Negi, Tajmyr Dist., USSR, Birula s.n. (not seen).

This is presumed to be *Arctoparmelia separata* (T. Fries) Hale (Hale, 1986a).

Parmelia birulae var. grumosa Llano, 1951:197.

Type Collection.—Anaktuvuk Pass, Alaska, USA, Llano 236 (US, lectotype). This is also a synonym of *Arctoparmelia separata* (T. Fries) Hale (Hale, 1986a).

Parmelia boudy de lesdainii (“boudy de lesdainii”) Gyelnik, 1931b:281.

Type Collection.—Hacienda d’Angasmarca, 160 km from Trujillo, Libertad, Peru, Standart s.n. (BP, lectotype). This is a synonym of *Psiloparmelia distincta* (Nylander) Hale (Hale, 1989b).

Parmelia brunnhalsleri f. regularis Gyelnik, 1938a:270. This is a nomen nudum.

Parmelia centrifuga (L.) Acharius, 1803:206.

See entry under *Lichen centrifugus*.

Parmelia centrifuga var. dealbata T. Fries, 1871:129.

Type Collection.—Nerica, Gothlunda, Sweden, Blomberg s.n. (UPS, lectotype). This is *Arctoparmelia aleuritica* (Nylander) Hale (Hale, 1986a).

Parmelia centrifuga var. groenlandica (Lyng.) Lyngge, 1947:349.

This is *Arctoparmelia subcentrifuga* (Oxner) Hale (Hale, 1986a).

Parmelia centrifuga var. muscicava Nylander, 1887:201.

Type Collection.—Lawrence Bay, Behring Sea, Almquist s.n. (H-Nylander 34677, lectotype). This is *Arctoparmelia separata* (T. Fries) Hale (Hale, 1986a).

Parmelia centrifuga f. viridecens Gyelnik, 1932a:211.

Type Collection.—Tavastia media, Finland, Norlin in Nylander and Norlin, Lichenes Fennici 202 (BP, holotype). This is *Arctoparmelia centrifuga* (L.) Hale (Hale, 1986a).

Parmelia chloria Sizemberger, 1890:151.

Type Collection.—Orange Free State, South Africa, Orpen s.n. (ZJL, lectotype). This peculiar, widespread South African lichen lacks usnic acid and appears to be a species of *Paraparmelia*.

Parmelia congruens Acharius, 1810:491.

Type Collection.—America borealis, Mus. D. D. Profess. et Equit. Swartz (H-Ach, not located). This species has never been typified. Tuckerman (1860:383) was mystified by its identity and Müller (1899a:64), who saw a poor specimen in herb. Swartz from Muhlenberg, could only conclude “non amplius distinguere possum.” A scrap in UPS-Ach appears to be *Xanthoparmelia* and contains hypoprotocetraric and usnic acids. However, Swartz did not collect in areas where such a species would occur (no eastern North American species contain hypoprotocetraric acid) and the substrate (“in arboribus”) conflicts, I recently described similar material from South Africa as *Xanthoparmelia neocongruens* Hale (Hale, 1984:76).

Parmelia consperrasa var. caespitosa Müller Argovians, 1896:60.

Type Collection.—Grapmian Mountains, Victoria, Australia, Sullivan s.n. Type specimen not found at G, BP, MEL, or W (Filson, 1986), although Gyelnik (1935:23) had seen it in G.

Parmelia consperrasa f. incolorata Parrique, 1906:139.

Type Collection.—Forez Mountains, France, Parrique s.n. (type destroyed at Dunquerque).

Parmelia consperrasa f. irregens Trass, 1963:208.

Parmelia consperrasa var. isidiosula Hillmann, 1923:65.

Type Collection.—Wezenow, Germany, [Hillmann s.n.]. The type was destroyed in WW II. Material so identified by Hillmann at Leiden and in Eriksen’s herbarium is *Xanthoparmelia consperrasa* (Acharius) Hale.

Parmelia consperrasa var. stenophylla f. microphylla Hillmann, 1936:175.

Type Collection.—Olbernhau, Germany, Flossner s.n. (type destroyed).

Parmelia consperrasa var. stenophylla f. angustissima Hillmann, 1938:174.

Type Collection.—Odry, Prov. Pomerellens, Poland, Krawiec s.n. The type was destroyed in WW II.

Parmelia consperrasa var. subconserrasa (Nylander) B. Stein, 1890:316.

See entry under Parmelia subconserrasa.

Parmelia consperrasa var. subconserrasa (Nylander) Olivier, 1894:57.

See entry under Parmelia subconserrasa.

See entry under Parmelia subconserrasa.

Parmelia conurbata var. exornata Zahlbruckner, 1932:251.

Type Collection.—Mt. Steinkopf, Namakuland, South Africa, Meyer s.n. (W, lectotype). This species is pseudocyphellate and belongs in a new genus, *Namakulax exornata* (Zahlbruckner) Hale (Hale, 1986a).

Parmelia conovulata (Hue) Zahlbruckner, 1929:272.

This is *Xanthomaculina conovulata* (Hue) Hale (Hale, 1985b).

Parmelia cuprea Persoon, 1827:196.

Type Collection.—Cape of Good Hope, South Africa, s.c. (not located).

This is a synonym of *Xanthomaculina hortensia* (Acharius) Hale (Hale, 1985b).

Parmelia diffugiens Zahlbruckner, 1927:348.

Type Collection.—Mt. Kamagatake, Shinano, Japan, Azahina 542 (W, lectotype; TNS, islectotype). This is *Arctoparmelia separata* (T. Fries) Hale (Hale, 1986a).

Parmelia distincta Nylander, 1861:374.

Type Collection.—Bolivia, Andes, D. Mandon s.n. (H-Nyl, lectotype; G, M, islectotypes). This is *Psiloparmelia distincta* (Nylander) Hale (Hale, 1989b).

Parmelia distincta f. boudy de lesdainii (Gyelnik) Gyelnik, 1938b:26.

See entry under *Parmelia boudy de lesdainii*.

See entry for Parmelia congruens.

Parmelia excursiana Hale, 1971a:348.

Type Collection.—Between O’kien and Springbok, Dist. Namaqualand, Cape Province, South Africa, Albornhorn 4792 (L.D., holotype; US, isotype). This species is now assigned to *Karowia: K. perspessa* (Siizeberger) Hale (Hale, 1989c).

Parmelia exornata (Zahlbruckner) Bruse, 1984:321.

See entry under Parmelia conurbata var. exornata.

Parmelia flavobrunnea Müller Argovians, 1891:379.

Type Collection.—Azangaro, Peru, Lechler 1766 (BM, lectotype; G, islectotype). This Andean species is a synonym of *Psiloparmelia distincta* (Nylander) Hale (Hale, 1989b).

Parmelia frondosa Hale, 1971a:349.

Type Collection.—Upper Witts Kloor, Dist. Ceres, Cape Province, South Africa, Estherhuysen 21846 (L.D., holotype; US, isotype). This is an umbilicate species, now placed in *Xanthomaculina frondosa* (Hale) (Hale, 1985b).

Parmelia fujenisii Dodge, 1966:346.

Type Collection.—Mt. Dorothea, Tierra del Fuego, Chile, Sigl et al. 392z (FH-Dodge, lectotype; designated type in US not found). This is a *Flavoparmelia*.

Parmelia gerlachii Zahlbruckner, 1929:137.

Based on *Parmelia antarctica* Vainio (= Flavoparmelia gerlachii (Zahlbruckner) Hale (Hale, 1986a)) not *P. antarctica* Bitter, 1901:248 (= Hypogymnia).

Parmelia greenlandica Lyngge in Lyngge and Schølander, 1932:73.

Type Collection.—Rohsfjorden, Davysundet, Kong Öcars Fjorden,
Parmelia halseyana Tuckerman, 1841:442.

Type Collection.—Notch of White Mountains, New Hampshire, USA, Tuckerman s.n. (FH-Tuck, lectotype). This is Arctoparmelia centrifuga (L.) Hale (Hale, 1986a).

Parmelia kanszeni Gyelnik, 1939a:278.

Type Collection.—Near Buenos Aires, Argentina, Lillie 936 (BP, lectotype; designated type in Bouly de Lesdain herbarium destroyed). This is a synonym of Flavoparmelia papillosa (Lynge) Hale (Hale, 1960c).

Type Collection.—[South Africa], Thunberg herb. (UPS, lectotype). This well-known species is now classified in Xanthomaculina as X. hottenrotta (Acharius) Hale (Hale, 1985b).

Parmelia huxiana Gyelnik, 1931b:288.

A nonum novum for Parmelia convoluta (Hue) Zahlbruckner, 1929:272 (not Parmelia convoluta Kremplhuber, 1881:337), now recognized as Xanthomaculina convoluta (Hue) Hale (Hale, 1985b).

Type Collection.—Vom Cap [South Africa], s.c. The type has not been located but it is almost certainly a synonym of Xanthomaculina hottenrotta (Acharius) Hale (Hale, 1985b).

Parmelia impexa Stirton, 1873:20.

Type Collection.—Wellington, New Zealand, Buchanan. The type could not be located at BM or GLAM.

Parmelia incurva (Persoon) Fries, 1826:31.

See entry under Lichen incurvus.

Type Collection.—Ascendorf and Rehdorf, North Bohemia, Anders s.n. (PRM, not seen). This is presumed to be Arctoparmelia incurva (Persoon) Hale (Hale, 1986a).

Type Collection.—[Vaheri], Jämsä, Tavastia Australis, Finland, Koskinen s.n., 19 July 1952 (B, lectotype). This is a synonym of Arctoparmelia incurva (Persoon) Hale (Hale, 1986a).

Parmelia interrupta Stizenberger, 1890:154.

Type Collection.—Near Ceres, Warme Bokkeveld Mountains, South Africa, Macowan s.n. (ZT, lectotype). This is a synonym of P. adhaerens Nylander (= Karowia adhaerens (Nylander) Hale) (Hale, 1989a).

Parmelia isidiigera (Müll Argoviensis) Vainio, 1900:6.

While this combination at species rank is listed in Zahlbruckner’s Catalogus, Vainio did not make the combination; he merely listed “P. isidiigera Müll. Arg.” on a separate line. Parmelia isidiigera (Müller Argoviensis) Gyelnik, 1935:27 is a distinct species (X. isidiigera (Müller Argoviensis) Eliz and Johnston) related to X. australasica Galloway.

See entry under Parmelia conspersa var. caespitosa.

Parmelia lecanoraecus Müller Argoviensis, 1888b:529.

Type Collection.—Near Arisdrift, Oranjemund, South Africa, Schneck 543 (G, lectotype). This unique lichen contains etcrine acid and abundant skyrin (pigment not observed by Müller but later reported by Vainio, 1900:4) but lacks atranorin as well as usnic acid in the cortex. It is not a Xanthoparmelia, although superficially close to the X. equis. Members of the genus Paraparmelia, P. lecanoraecus (Müller Argoviensis) Eliz, Johnston, and Verdon, 1986.

Parmelia molliscula var. robusta B. Stein, 1890:317.

Type Collection.—Kilimanjaro, Meyer s.n. Nomen nudum without a description.

Parmelia molliscula var. kilimanjaroensis B. Stein, 1890:317.

Type Collection.—Kilimanjaro, Meyer s.n. Nomen nudum without a description.

Parmelia moniliformis Babington in Hooker, 1855:287.

Type Collection.—Colenso, New Zealand (BM, lectotype). The excellent color plate (Tab. CXXVII, fig. 3) indicates a Xanthoparmelia of the molliscula type. A specimen in PC is Panoparmelia angustata (D. Galloway, pers. comm.).

Parmelia mougouzi var. deitibata Massalongo f. leptophylla Massalongo, 1861:51.

Type Collection.—Cape of Good Hope, Wawra s.n. (VER, lectotype). This is Paraparmelia xanthomelanoides Elix and Nash in Nash and Elix (1987).

Parmelia mougouzi var. deitibata Massalongo f. platyphylla Massalongo, 1861:50 (= var. deitibata). Type Collection.—Cape of Good Hope, Wawra s.n. (VER, lectotype). This is Paraparmelia xanthomelanoides Elix and Nash in Nash and Elix (1987).

Type Collection.—Dresden, Germany, Schade s.n. (type destroyed).

Parmelia mougouzi var. reagens (Hillmann) Erichsen, 1957:317.

This is an illegitimate name with no basionym cited.

Parmelia multifida (Deighton) A. L. Smith, 1918:141.

This is Arctoparmelia centrifuga (L.) Hale (Hale, 1986a).

See entry for Parmelia centrifuga var. mucricolga.

Parmelia neoeverrucigera Gyelnik, 1939a:284.

Type Collection.—Montis Kriván (Tatra), Hungary, Lajo 4632 (W, lectotype). This is Parmeliopsis ambigua (Wulfen) Nylander.

Type Collection.—Njala, Kori, Sierra Leone, Deighton M5642 (BM, holotype). This is a synonym of Bulbothrix goebeli (Zenkzer) Hale (Hale, 1976b:15).

Parmelia osseosalba Vainio, 1921:39.

Type Collection.—Doi Sutep, Thailand, Hosseus (TUR, Vainio herb. no. 2999). It is not a Xanthoparmelia at all, as earlier suggested by Gyelnik (1938b:32) but a species of Hypotrachyna, H. osseosalba (Vainio) Park and Hale, 1989:88.

Parmelia pachyhalica Sprengel in Nylander, 1860:399.

Type Collection.—Cape of Good Hope, South Africa, Drege 73 s.n. (W, lectotype). This is a synonym of Xanthomaculina hottenrotta (Acharius) Hale (Hale, 1985b).

Parmelia papillosa Lynge in Gyelnik, 1935:43.

Type Collection.—La Paz, Canelones, Uruguay, Felippone 752 (W, lectotype). This is Flavoparmelia papillosa (Lynge) Hale (Hale, 1986c).

Type Collection.—Estancia Siete Cerros, Rocha, Uruguay, Hosseus 32. The type has not yet been located at BP or M.

Type Collection.—Estancia Siete Cerros, Rocha, Uruguay, Hosseus 30. The type has not yet been located at BP or M.

Parmelia perrnambucana Kurokawa, 1974:298.

Type Collection.—Ibimirim, Pernambuco, Brazil, Kurokawa 8094 (TNS, holotype). This appears to be a species of Flavoparmelia, perhaps F. leucosantha (Müller Argoviensis) Hale (Hale, 1986c).

Parmelia perspersa Stizenberger, 1880:152.

Type Collection.—Mt. Lion, Cape Town, South Africa, Macowan s.n. (ZT, lectotype). Known only from the type collection, this is Karowia perspersa (Stizenberger) Hale (Hale, 1989c).

Parmelia pomifera Zahlbruckner, 1941:106.

Type Collection.—Mt. Matthews, Taranu Mountains, New Zealand, Beddie ZA200 (W, lectotype). This is a species of Parmotrema.

Type Collection.—Povo de Lezmoso, Portugal, Sampaio 6 p.p. (BP). The type could not be found at BP and no duplicate specimens were located in LISU.

Parmelia propogulifera Vainio, 1899b(123).
Type Collection.—Bogotá, Colombia, Weir 72 (BM, lectotype). Vainio's name is based on a species of Hypotrachyna microbasta (Vainio) Hale (1975). Geylnik (1938b:39), however, recombined Parmelia stenophylloides var. propagulifera, a Xanthoparmelia, as P. propagulifera (Vainio) Geylnik, which is a later homonym of P. propagulifera Vainio (1899b). He then proposed a new name, P. neopropagulifera, for the earlier (1899b) taxon referred to Hypotrachyna! I erroneously recombined the epithet neopropagulifera in Xanthoparmelia (Hale, 1987b), and the correct name for Vainio's (1890) species is X. neopropaguloides.

Parmelia propagulifera (Vainio) Geylnik, 1938b:39.

See entry under Parmelia propagulifera Vainio.

Parmelia recurva Acharius, 1803:201.

Type Collection.—Sweden, s.c. (H-Ach, lectotype). This is Arctoparmelia incurva (Persoon) Hale (1986a).

Parmelia redacta Stinton, 1900:76.

Type Collection.—New South Wales, N.S.W., Australia, Kirton s.n. (BM, lectotype). This species can be identified with Dirinaria aplana (Vée) Awasahi in Awasahi and Agarval (1970:135).

Parmelia saxeti Ziszenberger, 1890:153.

Type Collection.—Lubombo Mountains, Transvaal, South Africa, Wilms s.n. (ZT, lectotype). This subrecentus, effigurate-lobate species is now placed in the genus Karioxia as K. saxeti (Ziszenberger) Hale, 1989c.

Parmelia scholanderi Dodge, 1966:346.

Type Collection.—Puerto Eden, Wellington Island, Magallanes, Chile, Scholander s.n. (FH-Dodge, holotype). Although Dodge indicated "Parmelia (Xanthoparmelia) scholanderi," the type can be identified with Hypotrachyna sinuosa (Smith) Hale (1975).

Parmelia separata T. Fries, 1880:353.

Type Collection.—Westward-Ho! Valley, [Ellesmere Island], Canada, Feilden s.n. (UPS, lectotype). This is now Arctoparmelia separata (T. Fries) Hale (1986a).

Type Collection.—Matagama, Shikoku, Japan, Topi s.n. (INS, holotype; H, isotype). This is a Karioxia species and a synonym of X. saxeti (Ziszenberger) Hale, 1989c.

Parmelia squamosaformis Geylnik, 1934c:163.

Type Collection.—Tamsui, Taiwan, Fourie 76 (BP, lectotype). This is a synonym of Karioxia saxeti (Ziszenberger) Hale (1989c).

See entry under Parmelia subconspersa.

Parmelia stictella Massalongo, 1861:52.

Type Collection.—Cape of Good Hope, South Africa, Wawra s.n. (VER, lectotype). This is a synonym of Xanthomaculina houtoutoata (Acharius) Hale (1985b).

Parmelia subcentrifuga Oxner, 1940:33.

Type Collection.—Based on Parmelia groenlandica Lyngbye. This is now Arctoparmelia subcentrifuga (Oxner) Hale (1986a).

Parmelia subconspersa Müller Argoviensis, 1889a:64.

Type Collection.—Argentina, Lorenz & Hieronymus s.n. (M, lectotype; G, W, isotype). This is a synonym of Pseudoparmelia distincta (Nylander) Hale (1989b).

Parmelia subconspersa var. bouly de le Grandi (Geylnik) Geylnik, 1935:21.

See entry under Parmelia bouly de le Grandi.

Parmelia subconspersa Nylander, 1869b:293.

Type Collection.—N. Hollandia, Sunday in 1862 (Nylander herb. no. 34969, lectotype). The lectotype specimen is Flavoparmelia radiata (Taylor) Hale, selected by Geylnik (1935:49) as the lectotype of Parmelia subconspersa. Other syntypes are New Zealand (nos. 34708 and 34718) = P. lineolata Geylnik (= X. scabrosa (Taylor) Hale); Ins. Bourbon s.b. (no. 34702b) (= X. leonora (Massalongo) Hale). The material from Brasilia and Gallia was not seen.

Parmelia subconspersa var. benguellensis Vainio, 1910b:401.

Type Collection.—M. Morro de Lopollo, Ilúila, Benguela, Angola, Welwich 31 p.p. (TUR, lectotype; BM, isotype). This is Flavoparmelia amplexa (Stilton) Hale (1986c).

Parmelia subconspersa var. submonophylla Asahina, 1952:63.

Type Collection.—No type is cited.

Type Collection.—Mt. Tibesti, Tousside, Chad, Monod 8226. The type specimen was requested from IFAN but has not yet been located and studied.

Type Collection.—Somerset East, Cape Province, South Africa, MacOwan s.n. (BM, lectotype). The type specimen is fragmentary and its identity remains in doubt. It may be a Flavoparmelia.

Parmelia xanthotropa f. squamica [squamaeola] (Geylnik) Geylnik, 1938b:44.

See entry under P. papillosa f. squamaeola.

Parmelia xanthotropa f. exornata (Geylnik) Geylnik, 1938b:44.

See entry under P. papillosa var. exornata.

Parmelia zonkeri Dodge, 1959:74.

Type Collection.—Bipinde, Cameroon, Zunker 4053 (BM, lectotype; FH-Dodge, isotype). This is a synonym of Pseudoparmelia sphaerospora (Nylander) Hale (1976a).

See entry under Parmelia interrupta.

Umbilicaria lecanorocarpa Krempehuber, 1877:440.

Type Collection.—Cape of Good Hope, Bains-Kloof, South Africa, Wawra [88] (M, lectotype). This is a synonym of Xanthomaculina houtoutoata (Acharius) Hale (1985b).

Xanthoparmelia adherens (Nylander) Hale, 1974b:486.

See entry under Parmelia adherens.

Xanthoparmelia centrifuga (L.) Hale, 1974b:486.

See entry under Lichen centrifugus.

Xanthoparmelia chlora (Ziszenberger) Hale, 1974b:486.

See entry under Parmelia chlora.

Xanthoparmelia distincta (Nylander) Hale, 1974b:487.

See entry under Parmelia distincta.

Xanthoparmelia encrustans (Hale) Hale, 1974b:487.

See entry under Parmelia encrustans.

Xanthoparmelia exornata (Zahlbruckner) Bruse and Knox in Knox and Bruse, 1983:150.

See entry under Parmelia conturbata var. exornata.

Xanthoparmelia flavobrunnea (Müller Argoviensis) Hale, 1974b:487.

See entry under Parmelia flavobrunnea.

Xanthoparmelia gerlachii (Zahlbruckner) Hale, 1974b:486.

This is Flavoparmelia gerlachii (Zahlbruckner) Hale (1986c).

Xanthoparmelia incurva (Persoon) Hale, 1974b:488.

See entry under Parmelia incurva.

See entry under Parmelia interrumpa.

Xanthoparmelia lividica Hale, 1986b:584.

Type Collection.—Olifantsbaai, Cape of Good Hope Nature Reserve, Cape Province, South Africa, Grid 3418 AD, Hale 74902 (US, holotype; PEE, isotype). This is a Paraparmelia, there being no usnic acid in the cortex.

Xanthoparmelia papillosa (Lyngbye) Hale, 1974b:488.

See entry under Parmelia papillosa.

Xanthoparmelia neopropagulifera (Geylnik) Hale, 1987b:324.

See entry under Parmelia propagulifera.

Xanthoparmelia separata (T. Fries) Hale, 1974b:489.

See entry under Parmelia separata.

See entry under Parmelia stenophylloides.

Xanthoparmelia subcentrifuga (Oxner) Hale, 1974b:489.

See entry under Parmelia subcentrifuga.

Xanthoparmelia subconspersa (Nylander) Hale, 1974b:489.

See entry under Parmelia subconspersa.
Abbayas, H. des

Acharius, E.

Ahner, S.

Ahti, T., I.M. Brodo, and W.J. Noble

Anders, J.

Anzi, M.

Asahina, Y.

Awasthi, D.D., and M.R. Agarwal

Baker, C., J.A. Elix, D.P.H. Murphy, S. Kurokawa, and M.V. Sargent

Begg, W.R., D.O. Chester, and J.A. Elix

Begg, W.R., J.A. Elix, and A.J. Jones

Bellemère, A., and M.-A. Letrouit-Galinou

Berry, E.C.

Bitter, G.

Boistel, A.

Boyle de Lesdain, M.

Briquet, J.

Brasse, F.A.

Bouly de Lesdain, M.

Büdel, B., and D.C.J. Wessels

Byl, v. d. P.A.

Chao, C.-d.

Chester, D.O., and J.A. Elix

Clements, F.E., and C.L. Shear

Coutinho, P.

Cretzoiu, P.
1933. Neue Beiträge zur Flechtenflora von Rumänien. Fedde Repertorium
Specreriun Novarum Regni Vegetabilis, 31:357-368.

Crombie, J.M.

Culberson, C.F.

Culberson, C.F., W.L. Culberson, and A. Johnson

Dahl, E.

des Abbayes, H. See Abbayes, H. des.

Dey, J.

Dickson, J.

Dodge, C.W.

Dodge, C.W., and G.E. Baker

Doigie, E.M.

Du Rietz, G.E.

Egan, R.S.

Egan, R.S., and K.S. Derstine

Elenkin, A.

Elix, J.A.

Elix, J.A., and J. Johnston

Elix, J.A., J. Johnston, and P.A. Armstrong

Elix, J.A., J. Johnston, and D. Verdon

Elix, J.A., U.A. Jenie, and J.L. Parker

Elix, J.A., and L. Lajide

Elix, J.A., A.A. Whittton, and M.V. Sargent

Erichsen, C.F.E.
1930. Die Flechten des Moränegebiets von Ostschleswig mit...

1971a. Studies on Parmelia Subgenus Xanthoparmelia (Lichenes) in South

Verseghy, K.

Voss, G.

Voss, E.G. et al.

Weber, W.A.

Wei, J.C.

Werner, R.G.

Willey, H.

Williams, T.A.

Zahlbruckner, A.

Zhao, C.-d. See Chao, C.-d.

Zopf, W.

Index

(Synonyms in italics)

Borrera
 camtschadalis, 81
Endocarpon?
 vagans, 219
Hypogymnia
 kiboensis, 135
 rhodesiana, 73
Imbricaria
 conspersa, 91
 conspersa * isidiosa, 132
 conspersa ** isidiata, 91
 conspersa a) munda, 91
 conspersa b) coralloidea, 91
 conspersa var. hypoclysta, 201
 conspersa var. laxa, 209
 conspersa var. polyphyloides, 208
 constrictans, 94
 constrictans * isidiophora, 160
 constrictans var. eradicata, 110
 mougeotii, 151
Lichen
 conspersus, 91
Omphalodium
 hypoleium, 125
 hypoleium var. tenuifidum, 110
 mutabile, 152
Paraparmelia
 capnoides, 70
 fumigata, 117
 interposita, 158
 nana, 154
 xanthohomelaena, 226
Parmelia
 abstrusa var. subramigera, 204
 adplanata, 136
 adplanata f. isidiigera, 136
 adplanata var. isidiigera, 136
 adpressa, 207
 adpressa var. endochrysea, 109
 aggregata, 62
 ajoensis, 65
 algeriensis, 213
 almbornii, 66
 amableana, 67
 ambigu, 204
 ambigu f. indiana, 204
 ambigu var. exasperata, 68
 ambigu var. isidiosa, 204
 ambositrana, 204
 amphixantha, 67
 amphixanthoides, 67
 amplexula, 67
 amplexula var. beljensii, 189
 angustiphyll, 68
 angustiphylla f. euangustiphylla, 68
 angustiphylla f. vaidaskertensis, 93
 antleriformis, 70
 arapilensis, 70
 arseneana, 166
 atlantica, 91
 atroventralis, 71
 australasica, 73
 australiensis, 73
 austroafrican, 73
 austroafrican f. angustior, 171
 austroafrican f. citrinireagens, 171
 austroafrican f. digitula, 93
 austroafrican f. esaxicola, 171
 austroafrican f. mitrovicensis, 177
 austroafrican f. wyomingica, 226
 bakonyensis, 91
 barbatica, 74
 barbellata, 74
 bellatula, 75
 beljensii, 189
 benyovszkyana, 75
 bibax, 77
 bohemica, 91
 brunthaleri, 78
 brunthaleri f. irregularis, 199
 bungendorensis, 78
 burmeisteri, 78
 byllii, 84
 callifolia, 221
 camtschadalis, 81
 canariensis, 204
 capicola, 83
 callifolia, 221
 camtschadalis, 81
 canariensis, 204
 capicola, 83

241
capnoides, 70
cedrus-montana, 83
ceresensis, 84
ceresina, 84
chalybaeizans, 84
theelii, 84
chlorochroa, 86
citrinireagens, 171
citrinireagens var. angustior, 171
clivorum, 86
colorata, 87
conspersa var. angustiphylla, 68
concolor, 89
gensis, 90
gestan, 90
goncilli, 91
consociata, 91
consersa, 91
consersa β stenophylla, 192
consersa a latior, 192
consersa c abortiva, 192
consersa c. corallina, 91
consersa f. alpigena, 115
consersa f. arboricola, 93
consersa f. balatonica, 193
consersa f. borealis, 193
consersa f. convoluta, 192
consersa f. dentaticolata, 193
consersa f. dispersa, 91
consersa f. felkaensis, 115
consersa f. glomulifera, 93
consersa f. hypocysta, 201
consersa f. imbricata, 193
consersa f. isidiata, 93
consersa f. lacinulata, 209
consersa f. lignicola, 93
consersa f. maitrae, 177
consersa f. mediterranea, 93
consersa f. mollisscila, 149
consersa f. monteviandis, 127
consersa f. mougeotii, 151
consersa f. munda, 91
consersa f. parvula, 199
consersa f. planilobata, 175
consersa f. polita polyphylla, 148
consersa f. pueblana, 209
consersa f. stenophylla, 192
consersa f. stenotera, 171
consersa f. strigosa, 207
consersa f. subtanarivensis, 200
consersa f. subterricola, 179
consersa f. taeniata, 193
consersa f. terricola, 171
consersa f. vaga, 199
consersa f. viridulo-umbrina, 193
consersa g. georgina, 192
consersa ssp. digitulata, 91
consersa ssp. mollisscila, 149
consersa ssp. mollisscila var. stenophylla, 193
consersa ssp. mollisscila var. vagans, 219
consersa ssp. mollisscila var. vagans f. desertorum, 99
consersa var. ambiguia, 204
consersa var. astroisricana, 73
consersa var. constrictians, 94
consersa var. constrictians f. isidiophora, 160
consersa var. diffraeata, 139
consersa var. digitulata f. intermedia, 91
consersa var. endomiltoides, 109
consersa var. eradicata, 110
consersa var. felkaensis, 115
consersa var. heraultensis, 199
consersa var. hypocleistooides f. isidiosa, 189
consersa var. hypoclysta, 201
consersa var. hypoclysta f. isidiosa, 204
consersa var. hypoclystooides, 189
consersa var. imbricata, 192
consersa var. imitans, 193
consersa var. incisa, 209
consersa var. isidiata, 91
consersa var. isidiata f. heteroclyta, 91
consersa var. isidiophora, 220
consersa var. isidiosa, 213
consersa var. laciniatula, 91
consersa var. laxa, 209
consersa var. laxa f. isidiigera, 132
consersa var. lexodes f. lusitana, 220
consersa var. multipartita, 151
consersa var. nigromarginata, 166
consersa var. nigromarginata, 86
consersa var. obtecta, 217
consersa var. panniculosa, 68
consersa var. polyphylloides, 208
consersa var. polyphylloides f. exasperata, 67
consersa var. pulvinaris, 179
consersa var. quartzicola, 151
consersa var. rosettaformis, 193
consersa var. rugulosa, 113
consersa var. stenophylla f. georgina, 193
consersa var. stenophylla f. hypoclysta, 201
consersa var. stenophylla f. imbricata, 193
consersa var. stenophylla f. isidiosa, 132
consersa var. stenophylla f. taeniata, 193
consersa var. stenophylloides, 199
consersa var. strigosa, 207
consersa var. subdiffluens, 199
consersa var. synestia, 208
consersa var. tatrensis, 91
consersa var. thamnidiella, 149
consersa var. vadaskertensis, 91
conspersa var. verrucigera, 220
conspersa var. verrucigera f. lusitana, 220
conspersula, 93
conspersula f. chalybaezans, 84
constipata 94
constriectans, 94
constriectans f. inactiva, 149
constriectans var. eradicata, 210
convexula, 94
convoluta, 95
convoluta var. pseudohungarica, 179
convoluta var. subdensa, 193
cordillerana, 95
coreana, 95
cumberlandia, 98
dahlii, 107
dayiana, 98
decipiens, 204
desertorum, 99
desertorum f. convoluta, 95
desertorum f. elegans, 81
desertorum f. minuscula, 81
desertorum f. neodesertorum, 99
desertorum f. neovagans, 219
desertorum f. subflabellata, 200
diacida, 99
diaderata, 101
dichotoma, 101
dichromatica, 101
dierythra, 101
digitiformis, 103
digitulata f. angustior, 171
digitulata f. mitrovicensis, 177
digitulata var. citrinireagens, 171
digitulata var. esaxicola, 171
digitulata var. mitrovicensis, 177
digitulata var. wyomingica, 226
discreta, 151
dissensa, 103
domokosii, 104
dussii, 204
dysprosa, 105
ephaedodes, 107
dendochromatica, 107
dendochrysea, 109
dendomiltoides, 109
eradicata, 110
erosa, 110
etheridgensis, 95
everardensis, 112
evernica, 112
exillima, 113
eximia, 89
exuviatea, 113
eylesii, 171
farinosa, 113
filarszykana, 115
flaviscentreagens, 116
flindersiana, 116
foliosa, 117
fumigata, 117
furcata, 117
greckonialis, 188
geesterani, 117
glareosa, 119
globulifera, 120
gyelniki, 204
gyrophorica, 122
heterodoxa, 123
hirosakiensis, 204
huachucensis, 123
hypoclysta, 201
hypocystooides, 189
hypofusca, 209
hyproleia, 125
hyproleia f. hyproleoides, 125
hyproleia var. crenata, 125
hyproleia var. tenuifida, 110
hyproleoides, 125
hypomelaena, 125
hyproleoides, 193
hyporhytida, 127
hyporhytida, 127
imitans, 193
imitans f. arenicola, 193
imitans f. hyproleoides, 193
imitans f. protoimbricatoides, 171
imitans f. verrucosa, 193
imitans var. coloradoensis, 87
imitans var. hyproleoides, 193
imitans var. imbricatoides, 193
imitans var. ioannissimae, 209
incerta, 129
incisa, 209
incrusta, 129
intermedia, 193
interposita, 158
inuncta, 131
ioannissimae, 208
ioannissimae var. coloradoensis, 87
ioannissimae var. hyproleoides, 193
irregularis, 199
isidiata, 91
isidiata f. heteroclyta, 93
isidiata f. lacinulata, 91
isidiata f. phonolitica, 93
isidiata var. adventiva, 91
isidiata var. isidiosa, 213
isidiigera, 132
isidiigera f. corallina, 93
isidiigera f. coralloidea, 93
isidiigera f. isidiophora, 160
isidiigera f. ligustica, 220
isidiigera f. pseudoramigera, 93
isidiosa, 132
joranadia, 132
karoo, 133
korosi-csomae, 213
kurokawae, 138
lacinulata, 93
lavicola, 138
laxa, 209
laxa f. balatonica, 193
laxa f. borealis, 193
laxa f. lacinulata, 209
laxa f. montevidensis, 127
laxa f. parvula, 199
laxa f. pueblana, 209
laxa f. strangosa, 207
laxa f. subtanana rimensis, 200
laxa var. lacinulata, 209
laxa var. mediterranea, 93
laxa var. pulvinaris, 179
laxa var. rossetaeformis, 193
laxa var. subdiffuens, 199
laxa var. terricola, 179
lecanorica, 138
leonora, 138
leonora var. multifida, 125
leonora var. multifida, 138
leonora var. platyphylla, 138
lesdainii, 68
lessothoensis, 139
leucostigma, 139
lineola, 139
linkolae, 189
lojkana, 91
lojkana f. phonolitica, 93
loxodes var. digitiulata, 91
luminosa, 142
lusitana, 220
lusitana var. decipiens, 204
mannumensis, 142
marroninipuncta, 143
metaclystoides, 145
metamorphosa, 145
metastrigosa, 147
mexicana, 147
microspora, 148
mitrovcensis, 176
mixta, 169
molluscula, 149
molluscula f. stenophylla, 193
molluscula ssp. vagans, 219
molluscula var. hypoclysta, 201
molluscula var. taeniat a, 193
molluscula var. vagans, 219
montevindersis, 127
monticola, 149
mougeoti, 151
mougeoti f. deminuta, 151
mougeoti f. discreta, 151
mougeoti f. incurvoides, 151
mougeoti f. microphylla, 151
mougeoti f. mougeotina, 151
mougeoti f. sorediantana, 151
mougeoti var. obscurata, 151
mougeoti var. spumata, 151
mougeotina, 151
multipartita, 151
mutabilis, 152
nana, 154
nebulosa, 155
neocongensis, 155
neoconspersa, 157
neorimalis, 158
neosoredians, 217
neotinctina, 160
nigrescens, 177
nigropsoromifera, 161
norconvoluta, 163
noiata, 164
novomexicana, 166
obicta, 217
obicta var. tegulicola, 217
ochropulchra, 167
oleosa, 167
pantherina, 169
patula, 155
perfunctata, 154
perplexa, 170
pertinax, 171
phaeophana, 171
phaeophana f. arenicola, 193
phaeophana f. coloradoensis, 87
phaeophana f. imbricatoides, 193
phaeophana f. imitans, 193
phaeophana f. ioannis-simae, 209
phaeophana f. protoimbricatoides, 171
phaeophana f. verrucosa, 193
phaeophana var. stenotera, 171
philippiana, 173
phyllodactylaris, 112
piedmontensis, 173
plitii, 175
polyphylloides, 209
polyphylloides f. lacinulifera, 193
polyphylloides f. viridulo-umbrina, 193
polyphylloides var. somloensis, 193
portoalegrensis, 90
praegnans, 175
praetermissa, 115
propagulifera, 157
protodysprosa, 176
protomatrae, 176
protomatrae f. angustifolia, 176
protomatrae f. crustaeformis, 176
protomatrae var. tenuior, 176
protosoredians, 113
pseudoamphixantha, 111
pseudoconspersa, 149
pseudophyllarica, 179
pseudohungarica var. komotauensis, 193
pseudohungarica var. vacensis, 179
pseudohypotheleia, 179
pseudoramarigera, 91
pseudoservitiana, 220
pseudoservitiana f. exornata, 220
pseudoservitiana f. ornata, 93
psoromifergra, 180
pulvinaris, 179
pulvinaris f. dentaticola, 193
pulvinaris f. lacinulata, 179
pulvinaris var. balatonica, 193
pulvinaris var. hungarica, 179
pulvinaris var. lacinulata, 209
pulvinaris var. mediterranea, 220
pulvinaris var. terricola, 179
pumila, 181
punctulata, 181
pustuliza, 181
quintaria, 183
ramigera, 91
ramigera f. munita, 147
refringens, 132
regis-matthiae, 93
remanens, 183
reptans, 185
rimalis, 141
rogersii, 185
rosea, 213
rosea f. adventiva, 213
rubrireagens, 185
rubropustulata, 186
rugulosa, 113
rugulosa var. subirregularis, 217
salax, 70
samoensis var. flaviscentireagens, 116
saniensis, 188
saxatilis var. subomphalodes, 193
scabropustulata, 189
scabrosa, 189
schenckiana, 189
schenckiana f. imperfecta, 189
schenckiana f. perfecta, 189
schenckiana var. chalybaeizans, 84
schreuderiana, 84
serbica, 177
servitiana, 220
sigillata, 192
somloensis, 192
somloensis var. lacinulifera, 193
somloensis var. rotundata, 87
soredians f. farinosa, 113
soredians f. lobulata, 113
soredians f. muscicola, 113
soredians f. ulcerosa, 217
sorediantha, 151
spargens, 195
standaertii, 196
steineri, 149
stenophylla, 193
stenophylla f. corticalia, 193
stenophylla f. dentata, 177
stenophylla f. hypochysta, 201
stenophylla f. hypomelaena, 83
stenophylla f. imbricata, 193
stenophylla f. pulvinaris, 179
stenophylla f. taeniata, 193
stenophylla var. vagans, 219
stenophylloides var. propagulifera, 157
stenosporonica, 196
stenotera, 173
stramineonitens, 209
streimannii, 196
subamphixantha, 67
subaustraliensis, 95
subconspersa f. angustifolia, 177
subconspersa f. lobulifera, 127
subconspersa f. marusica, 68
subconspersa f. munda, 93
subconspersa f. nigromarginata, 166
subconspersa var. africana, 171
tokajensis, 213
transvaalensis, 214
tuberculata, 166
iucsonensis, 216
ulcerosa, 216
untamvuna, 217
unctula, 217
ustulata, 217
vagans, 219
vagans f. convoluta, 95
vagans f. elegans, 81
vagans f. elegans, subf. minuscula, 81
vagans f. subflabellata, 200
vereunda, 219
verrucigera, 220
versicolor, 220
violascens, 68
viridulo-umbrina, 193
viridulo-umbrina var. rotundata, 209
viridulo-umbrina var. somloensis, 193
viridulo-umbrina var. umbrina, 193
weberi, 223
wightii, 173
wildae, 224
willisii, 224
worcesteri, 224
wrightii, 173
wyomingica, 226
xanthomelaena, 226
xanthosorediata, 227
zeyheri, 189

Pseudoevernia
mollisscula, 149
thamnidiella, 149

Pseudoparmelia
endochromatica, 136
geesterani, 117
xanthomelaena, 226

Xanthoparmelia
acrita, 138
adleri, 61
affinis, 62
africana, 62
afrolavicola, 62
aggregata, 62
ajoensis, 65
albomaculata, 65
alectoronica, 65
alexandrensis, 66
aliphatica, 66
almbornii, 66
alternata, 66
amableana, 67
amphixanthra, 67
amphixanthoides, 67
amplexula, 67
amplexuloides, 68
angustiphylla, 68
anteriformis, 70
applicata, 70
arapilensis, 70
areolata, 70
argentensis, 181
arseneana, 166
atroventralis, 71
aurifera, 71
ausiana, 71
australasica, 73
australiensis, 73
austroafricana, 73
austroamericana, 127
austrocappensis, 73
ballingalliana, 74
barbatica, 74
barbellata, 74
barklyensis, 75
beatricea, 75
bellatula, 75
benyovszkyana, 75
bibax, 77
bicontinens, 77
blackdownensis, 77
boonahensis, 77
breviloba, 78
brunnthalcri, 78
bungendorensis, 78
burmeisteri, 78
bonyovszkyana, 75
calida, 80
californica, 80
callifolioides, 80
calvinia, 80
camtschadalis, 81
capensis, 83
catarinae, 83
cedrus-montana, 83
centralis, 83
ceresensis, 84
ceresina, 84
dalychaeizans, 84
dalychei, 84
chlorochra, 86
cirrhomedullosa, 86
clevation, 86
colensoica, 87
coloradoensis, 87
colorata, 87
competita, 89
concolor, 89
concomitans, 89
condaminensis, 89
coneruptens, 90
congensis, 90
congesta, 90
conjuncta, 91
consciata, 91
conspersa, 91
conspersula, 93
constipata, 94
constrictans, 94
contrasta, 94
convexula, 94
convoluta, 95
cordillerana, 95
coreana, 95
coriacea, 97
cotopaxiensis, 97
crassilobata, 97
crateriformis, 90
cravenii, 97
cumberlandia, 98
cylindriloba, 98
darlingensis, 98
dayiana, 98
dentata, 177
denudata, 99
desertorum, 99
diacida, 99
diandeta, 101
dichotoma, 101
dichromatica, 101
dierythra, 101
diffractaica, 103
digitiformis, 103
dissensa, 103
dissitifolia, 103
domokosii, 104
donneri, 104
dubitata, 104
duplicata, 104
durietzii, 105
dysprosa, 105
effigurata, 105
ecaeodes, 107
eifii, 107
elixii, 107
endochromatica, 107
endochrysea, 109
endomiltoides, 109
enteroxantha, 109
epigae, 109
equalis, 110
eradicata, 110
erosa, 110
eruptens, 112
esterhuyseniae, 112
everardensis, 112
evernica, 112
exemplaris, 113
exillima, 113
exuviata, 113
farinosa, 113
felkaensis, 115
ferraroiarna, 115
ferruma, 115
filarszykana, 115
filsonii, 116
flaviscentireagens, 116
flindersiana, 116
fucina, 117
fumigata, 117
furcata, 117
gleesterani, 117
gerhardii, 119
glareosa, 119
globisidiosa, 119
globulifera, 120
glomerulata, 120
gongylodes, 120
granulata, 120
greytonensis, 122
gyrophorica, 122
harrisii, 122
hedbergii, 109
heinari, 122
heterodoxa, 123
huachucensis, 123
hybrida, 123
hybridiza, 123
hypoFytytoides, 189
hypoleia, 125
hypomelaena, 125
hypomelaenoides, 125
hypoprotocetrarica, 127
hypopsila, 127
hyporhytida, 127
ianuhina, 128
idahoensis, 128
immunita, 128
incerta, 129
inconsipicua, 129
incrustata, 129
indumenica, 129
inflata, 131
iniquita, 131
inuncta, 131
ioannis-simae, 209
isidiascens, 131
isidiigera, 132
isidiosa, 132
joranadia, 132
kalbii, 132
karanojiae, 94
karoo, 133
karoenensis, 133
kasachstania, 133
keralensis, 133
khomasiana, 135
kiboensis, 135
kodisephola, 135
krogie, 136
kurukawae, 138
laciniata, 136
lagunebergenensis, 136
latilobata, 136
lavicola, 138
laviclelybaeizans, 89
laxencrustans, 138
lecanorica, 138
leonora, 138
lesothoensis, 139
leucostigma, 139
lineola, 139
lipochlorochroa, 141
lobulifera, 141
louisii, 141
luderitziana, 142
luminosa, 142
lusitana, 220
lynii, 142
mannumensis, 142
mapholanengensis, 143
maricopensis, 143
marroninipuncta, 143
maxima, 143
mhabanensis, 145
meruensis, 145
metaclystoides, 145
metamorphosa, 145
metastrigosa, 147
mexicana, 147
microlobulata, 147
microspora, 148
minuta, 148
moctezumensis, 148
mollis, 148
molliuscula, 149
montanensis, 149
monticola, 149
mougeotii, 151
mougeotina, 151
multiparita, 151
mutabilis, 152
namakwa, 152
namaquensis, 152
nana, 154
nashii, 154
natalensis, 154
naudesneka, 154
nebulosa, 155
neochlorochroa, 155
neocongensis, 155
neocongruens, 157
neoconspersa, 157
neopropaguloides, 157
neoreptans, 157
neorinalis, 158
neosynestia, 158
neotaractica, 158
neotasmicanica, 158
neotinctina, 160
neotumidosa, 160
neowebi, 160
neowyomingica, 161
nigraoleosa, 161
nigropsoromifera, 161
nonreagens, 161
norchlorochroa, 163
norcolorata, 163
norconvoluta, 163
norhypopsila, 163
norlobaronica, 164
norpraegnans, 164
norpumila, 164
norwalteri, 164
notata, 164
novomexicana, 166
nuwarensis, 173
oblisata, 166
obscurata, 166
ochropulchra, 167
oleosa, 167
olifantensis, 167
olivetorica, 167
oribensis, 169
pachyclada, 169
pantherina, 169
paradoxa, 169
parvoclystoides, 170
parvoincerta, 170
perplexa, 170
perrugosa, 170
pertinax, 171
peruviensis, 171
phacophana, 171
phillipsiana, 173
piedmontensis, 173
planilobata, 175
plittii, 175
praegnans, 175
probabarbellata, 175
prodomokosii, 176
protodyssprosa, 176
protolusitana, 176
protomatae, 176
protoquintaria, 177
proximata, 177
pseudoamphixantha, 177
pseudocongensis, 179
pseudohungarica, 179
pseudohypoleia, 179
psornorstictica, 180
psoronica, 180
psoromifera, 180
pumila, 181
punctulata, 181
pustulifera, 181
pustuliza, 181
pustulosorediata, 183
putsoa, 183
quintaria, 183
restringens, 132
remanens, 183
reptans, 185
rogersii, 185
rubrireagens, 185
rubromedulla, 185
rubropustulata, 186
rugulosa, 186
rupestris, 186
salamphixantha, 186
saleruptens, 188
salkiboensis, 188
saniensis, 188
scabrosa, 189
schenckiana, 189
schmidtii, 191
segregata, 191
serusiauxii, 191
shebaensis, 191
sigillata, 192
simulans, 192
skyrinifera, 192
somloensis, 192
spargenosa, 195
spargens, 195
springbokensis, 195
standaertii, 196
stenosporonica, 196
streimannii, 196
stuartensis, 196
subamplexuloides, 197
subbullata, 197
subcolorata, 197
subconvoluta, 197
subcrustacea, 199
subcrustosa, 170
subdecipiens, 199
subdiffuens, 199
subdistorta 200
subdomokosii 200
suberadicata 200
subflabellata 200
subfuscescens, 173
sublaevis 201
subluminosa 201
submougeotii 201
subnigra 203
subnuda 203
subochracea 203
subpallida 203
subpigmentosa 204
subplittii 204
subramigera 204
subruginosa 205
subrosedii 205
substenophylloides 205
substrigosa 207
succeedans 207
sulcifera 207
surrogata 207
swartbergensis 208
synestia 208
tablensis 208
tananarivensis, 200
taractica 208
tasmanica 208
teguta 209
tenacea 211
tenuloba 211
terrestris 211
terricola 211
thamnoides 213
thammolina 213
tinctina 213
tolucensis 214
toninioides 214
transvaalensis 214
treurensis 214
tsekensis 216
tucsonensis 216
tumidosa 216
ulcerosa 216
umtamvuna 217
unctula 217
ustulata 217
vagans 219
vendensis 219
verdonii 219
verecunda 219
verruciformis 220
verrucigera 220
versicolor 220
vicaria 221
victoriana 221
villamiana 221
viridis 221
walteri 223
weberti 223
wesselsii 223
wildae 224
willisii 224
wisangerensis 224
worcesteri 224
wrightiana 226
wyomingica 226
xanthomelaena 226
xanthomelanoides 227
xanthosorediata 227
xerophila 227
xizangensis 227
yowaensis 229
zontata 229
REQUIREMENTS FOR SMITHSONIAN SERIES PUBLICATION

Manuscripts intended for series publication receive substantive review (conducted by their originating Smithsonian museums or offices) and are submitted to the Smithsonian Institution Press with Form SI-36, which must show the approval of the appropriate authority designated by the sponsoring organizational unit. Requests for special treatment—use of color, foldouts, case-bound covers, etc.—require, on the same form, the added approval of the sponsoring authority.

Review of manuscripts and art by the Press for requirements of series format and style, completeness and clarity of copy, and arrangement of all material, as outlined below, will govern, within the judgment of the Press, acceptance or rejection of manuscripts and art.

Copy must be prepared on typewriter or word processor, double-spaced, on one side of standard white bond paper (not erasable), with 1 1/4" margins, submitted as ribbon copy (not carbon or xerox), in loose sheets (not stapled or bound), and accompanied by original art. Minimum acceptable length is 30 pages.

Front matter (preceding the text) should include: title page with only title and author and no other information, abstract page with author, title, series, etc., following the established format; table of contents with indents reflecting the hierarchy of heads in the paper; also, foreword and/or preface, if appropriate.

First page of text should carry the title and author at the top of the page; second page should have only the author's name and professional mailing address, to be used as an unnumbered footnote on the first page of printed text.

Center heads of whatever level should be typed with initial caps of major words, with extra space above and below the head, but no other preparation (such as all caps or underline, except for the underline necessary for generic and specific epithets). Run-in paragraph heads should use period/dashes or colons as necessary.

Tabulations within text (lists of data, often in parallel columns) can be typed on the text page where they occur, but they should not contain rules or numbered table captions.

Formal tables (numbered, with captions, boxheads, stubs, rules) should be submitted as carefully typed, double-spaced copy separate from the text; they will be typeset unless otherwise requested. If camera-copy use is anticipated, do not draw rules on manuscript copy.

Taxonomic keys in natural history papers should use the aligned-couplet form for zoology and may use the multi-level indent form for botany. If cross referencing is required between key and text, do not include page references within the key, but number the keyed-out taxa, using the same numbers with their corresponding heads in the text.

Synonymy in zoology must use the short form (taxon, author, year:page), with full reference at the end of the paper under "Literature Cited." For botany, the long form (taxon, author, abbreviated journal or book title, volume, page, year, with no reference in "Literature Cited") is optional.

Text-reference system (author, year; page used within the text, with full citation in "Literature Cited" at the end of the text) must be used in place of bibliographic footnotes in all Contributions Series and is strongly recommended in the Studies Series: "(Jones, 1910:122)" or "...Jones (1910:122)." If bibliographic footnotes are required, use the short form (author, brief title, page) with the full citation in the bibliography.

Footnotes, when few in number, whether annotative or bibliographic, should be typed on separate sheets and inserted immediately after the text pages on which the references occur. Extensive notes must be gathered together and placed at the end of the text in a notes section.

Bibliography, depending upon use, is termed "Literature Cited," "References," or "Bibliography." Spell out titles of books, articles, journals, and monographic series. For book and article titles use sentence-style capitalization according to the rules of the language employed (exception: capitalize all major words in English). For journal and series titles, capitalize the initial word and all subsequent words except articles, conjunctions, and prepositions. Transliterate languages that use a non-Roman alphabet according to the Library of Congress system. Underline (or italics) titles of journals and series and titles of books that are not part of a series.

Use the parentheses/colon system for volume (number), pagination: "10(2):5–9." For alignment and arrangement of elements, follow the format of recent publications in the series for which the manuscript is intended. Guidelines for preparing bibliography may be secured from Series Section, SI Press.

Legends for illustrations must be submitted at the end of the manuscript, with as many legends typed, double-spaced, to a page as convenient.

Illustrations must be submitted as original art (not copies) accompanying, but separate from, the manuscript. Guidelines for preparing art may be secured from Series Section, SI Press. All types of illustrations (photographs, line drawings, maps, etc.) may be intermixed throughout the printed text. They should be termed Figures and should be numbered consecutively as they will appear in the monograph. If several illustrations are treated as components of a single composite figure, they should be designated by lowercase italic letters on the illustration; also, in the legend and in text references the italic letters (underlined in copy) should be used: "Figure 9g." Illustrations that are intended to follow the printed text may be termed Plates, and any components should be similarly lettered and referenced: "Plate 9g." Keys to any symbols within an illustration should appear on the art rather than in the legend.

Some points of style: Do not use periods after such abbreviations as "mm, ft, USNM, NNE." Spell out numbers 'one' through 'nine' in expository text, but use digits in all other cases if possible. Use of the metric system of measurement is preferable; where use of the English system is unavoidable, supply metric equivalents in parentheses. Use the decimal system for precise measurements and relationships, common fractions for approximations. Use date/month/year sequence for dates: "9 April 1976." For months in tabular listings or data sections, use three-letter abbreviations with no periods: "Jan, Mar, Jun," etc. Omit space between initials of a personal name: "J.B. Jones."

Arrange and paginate sequentially every sheet of manuscript in the following order: (1) title page, (2) abstract, (3) contents, (4) foreword and/or preface, (5) text, (6) appendixes, (7) notes section, (8) glossary, (9) bibliography, (10) legends, (11) tables. Index copy may be submitted at page proof stage, but plans for an index should be indicated when manuscript is submitted.